Câu hỏi:

04/11/2025 8 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x + 2y - 1 \ge 0\\2x + y - 3 \le 0\\x \ge 0\\y \ge 0\end{array} \right.\) (I). Các câu sau đúng hay sai?

a) Đây là hệ bất phương trình bậc nhất hai ẩn.

b) \(\left( {3;2} \right)\) là một nghiệm của hệ bất phương trình.

c) Miền nghiệm của hệ bất phương trình trên là một miền tứ giác.

d) \(x = 1;y = 0\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) S

a) Đây là hệ bất phương trình bậc nhất hai ẩn.

b) Thay cặp số \(\left( {3;2} \right)\) vào bất phương trình thứ 2 của hệ ta thấy không thỏa mãn. Do đó \(\left( {3;2} \right)\) không là nghiệm của hệ bất phương trình.

c) Miền nghiệm của bất phương trình trên là miền tứ giác ABCD (phần tô màu).

a) Đây là hệ bất phương trình bậc nhất hai ẩn.  b) (3;2) là một nghiệm của hệ bất phương trình. (ảnh 1)

d) Ta có \(A\left( {0;\frac{1}{2}} \right),B\left( {0;3} \right),C\left( {\frac{3}{2};0} \right),D\left( {1;0} \right)\).

\(F\left( {0;\frac{1}{2}} \right) = 3.0 - \frac{1}{2} =  - \frac{1}{2}\); \(F\left( {0;3} \right) = 3.0 - 3 =  - 3\); \(F\left( {\frac{3}{2};0} \right) = 3.\frac{3}{2} - 0 = \frac{9}{2}\);

\(F\left( {1;0} \right) = 3.1 - 0 = 3\).

Do đó \(x = 0;y = 3\) là nghiệm của hệ bất phương trình (I) để \(F = 3x - y\) đạt giá trị nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2,18

Giả sử gốc tọa độ tại điểm F.

Hàm số của đồ thị biểu diễn đường đi của viên bi có dạng \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\).

Theo hình vẽ ta có đồ thị có đỉnh là \(C\left( {1;7} \right)\) và đi qua điểm \(A\left( {0;2} \right)\) nên ta có:

\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 5\\b = 10\\c = 2\end{array} \right.\).

Do đó, đồ thị hàm số biểu diễn đường đi của viên bi là \(y =  - 5{x^2} + 10x + 2\).

Điểm E là giao điểm của đồ thị với trục hoành nên hoành độ của điểm E là nghiệm của phương trình \( - 5{x^2} + 10x + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5 + \sqrt {35} }}{5}\\x = \frac{{5 - \sqrt {35} }}{5}\end{array} \right.\).

Mà \({x_E} > 0\) nên \({x_E} = \frac{{5 + \sqrt {35} }}{5} \approx 2,18\).

Vậy khoảng cách từ vị trí E đến vị trí F khoảng 2,18 mét.

Câu 2

A. \(\frac{{\sqrt 3 }}{3}\). 

B. \(\frac{{\sqrt 3 }}{2}\). 
C. \(\sqrt 3 \).   
D. \(1\).

Lời giải

Đáp án đúng là: C

\(\cos 30^\circ  + \sin 60^\circ \)\( = \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{2} = \sqrt 3 \).

Câu 3

A. \(\left( {{x_0};{y_0}} \right) = \left( {2;8} \right)\).  

B. \(\left( {{x_0};{y_0}} \right) = \left( { - 10; - 3} \right)\).    

C. \(\left( {{x_0};{y_0}} \right) = \left( {3;3} \right)\).   
D. \(\left( {{x_0};{y_0}} \right) = \left( {0;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(S = \frac{1}{2}bc\sin A\,.\)                             

B. \(S = \frac{1}{2}ac\sin A\,.\) 
C. \(S = \frac{1}{2}bc\sin B\,.\)     
D. \(S = \frac{1}{2}bc\sin B\,.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Buồn ngủ quá!      

B. Hình thoi có hai đường chéo vuông góc với nhau. 

C. 8 là số chính phương.  

D. Hà Nội là thủ đô của Việt Nam

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l} - 2x \le 0\\5x - 2y < 0\end{array} \right.\) . 

B. \(\left\{ \begin{array}{l}3y \ge 0\\x - y \ge 0\end{array} \right.\). 
C. \(\left\{ \begin{array}{l}4x - y \ge 0\\ - x - 3y < 0\end{array} \right.\).  
D. \(\left\{ \begin{array}{l}x + y \ge 0\\2x - 2{y^2} \ge 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP