Câu hỏi:

04/11/2025 51 Lưu

Với \[n \in {\mathbb{N}^*}\], trong các dãy số \(\left( {{u_n}} \right)\) cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào là dãy số tăng?       

A. \[{u_n} = \frac{2}{{{3^n}}}\];          
B. \[{u_n} = \frac{3}{n}\];                  
C. \[{u_n} = {2^n}\];                           
D. \[{u_n} = {\left( { - 2} \right)^n}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Do \({2^n};n\) là các dãy dương và tăng nên \(\frac{1}{{{2^n}}};\frac{1}{n}\) là các dãy giảm, do đó loại các phương án A, B.

Xét phương án C: \[{u_n} = {2^n} \Rightarrow {u_{n + 1}} - {u_n} = {2^{n + 1}} - {2^n} = {2^n} > 0\]. Do đó dãy số \({u_n} = {2^n}\) là dãy số tăng.

Xét phương án D: \({u_n} = {\left( { - 2} \right)^n}\)\({u_2} = 4;{u_5} = - 8\) nên \({u_2} > {u_5}\), do đó \({u_n}\) không là dãy số tăng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[2x - y \le 2\];                                                     
B. \[2x - 3y \le 0\];
C. \[2x + y < 2\];                                                      
D. \[2x - y > 2\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi phương trình đường thẳng \[d\] có dạng: \[y = ax + b\].

Đường thẳng \[d\] đi qua điểm \[\left( {1;\,0} \right)\]\[\left( {0;\, - 2} \right)\] nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}a + b = 0\\0a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 2\end{array} \right.\]

Vậy \[d\]: \[y = 2x - 2\]hay \[2x--y = 2\]

Lấy điểm \[\left( {0;\,1} \right)\] thuộc miền nghiệm của bất phương trình cần tìm, thay tọa độ điểm \[\left( {0;\,1} \right)\] vào biểu thức \[2x--y = 2\] ta được: \[2.0--1 = - 1 < 2\].

Vậy miền nghiệm được biểu diễn bởi nửa mặt phẳng không bị gạch (kể cả đường thẳng \[d\]) là miền nghiệm của bất phương trình\[2x--y \le 2\].

Câu 2

A. \(\left\{ {12;\,3} \right\}\);                           
B. \(\emptyset \);                                  
C. \(\left\{ {1;\,2} \right\}\);                       
D. \(\left\{ {1;\,2;\,3} \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Các tập con của tập \(A\) là: \(\left\{ 1 \right\},\,\left\{ 2 \right\},\,\left\{ 3 \right\},\,\,\left\{ {1;\,\,2} \right\},\,\left\{ {1;\,\,3} \right\},\,\,\left\{ {2;\,\,3} \right\},\,\,\left\{ {1;\,\,2;\,\,3} \right\},\,\,\emptyset \).

Vậy tập không là con của tập \(A\) là: \(\left\{ {12;\,3} \right\}\).

Câu 3

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                             
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 4;                                   
B. 6;                              
C. 8;                                       
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[1\];                            
B. \[ - 2\]\[;\]                              
C. \[0\]\[;\]                            
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP