Câu hỏi:

04/11/2025 66 Lưu

Trong không gian, cho đường thẳng \(d\) song song với mặt phẳng \(\left( \alpha \right)\), mặt phẳng \(\left( \beta \right)\) qua \(d\) cắt \(\left( \alpha \right)\) theo giao tuyến \(d'\). Khi đó        

A. \(d\,{\rm{//}}\,d'\);                             
B. \(d\) cắt \(d'\);        
C. \(d\)\(d'\) chéo nhau;                     
D. \(d \equiv d'\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(d' = \left( \alpha \right) \cap \left( \beta \right)\). Do \(d\)\(d'\) cùng thuộc \(\left( \beta \right)\) nên \(d\) cắt \(d'\) hoặc \(d\,{\rm{//}}\,d'\).

Nếu \(d\) cắt \(d'\), khi đó \(d\) cắt \(\left( \alpha \right)\) (mâu thuẫn với giả thiết). Vậy \(d\,{\rm{//}}\,d'\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[2x - y \le 2\];                                                     
B. \[2x - 3y \le 0\];
C. \[2x + y < 2\];                                                      
D. \[2x - y > 2\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi phương trình đường thẳng \[d\] có dạng: \[y = ax + b\].

Đường thẳng \[d\] đi qua điểm \[\left( {1;\,0} \right)\]\[\left( {0;\, - 2} \right)\] nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}a + b = 0\\0a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 2\end{array} \right.\]

Vậy \[d\]: \[y = 2x - 2\]hay \[2x--y = 2\]

Lấy điểm \[\left( {0;\,1} \right)\] thuộc miền nghiệm của bất phương trình cần tìm, thay tọa độ điểm \[\left( {0;\,1} \right)\] vào biểu thức \[2x--y = 2\] ta được: \[2.0--1 = - 1 < 2\].

Vậy miền nghiệm được biểu diễn bởi nửa mặt phẳng không bị gạch (kể cả đường thẳng \[d\]) là miền nghiệm của bất phương trình\[2x--y \le 2\].

Câu 2

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                             
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Câu 3

A. \(\left\{ {12;\,3} \right\}\);                           
B. \(\emptyset \);                                  
C. \(\left\{ {1;\,2} \right\}\);                       
D. \(\left\{ {1;\,2;\,3} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[M\left( {0;\,1} \right)\];                           
B. \[N\left( { - 1;\,1} \right)\];            
C. \[P\left( {1;\,3} \right)\];                      
D. \[Q\left( { - 1;\,0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP