Trong các hàm số \(y = \sin x\), \(y = \cos x\), \(y = \tan x\), \(y = \cot x\), có bao nhiêu hàm số tuần hoàn chu kì \(2\pi \)?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Các hàm số \(y = \sin x\), \(y = \cos x\) tuần hoàn chu kì \(2\pi \).
Các hàm số \(y = \tan x\), \(y = \cot x\) tuần hoàn chu kì \(\pi \).
Vậy có 2 hàm số tuần hoàn chu kì \(2\pi \).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Áp dụng công thức \({\rm{cos}}x{\rm{cos}}y + {\rm{sin}}x{\rm{sin}}y = {\rm{cos}}\left( {x - y} \right)\), ta được
\(\;M = {\rm{cos}}\left( {a + b} \right){\rm{cos}}\left( {a - b} \right) + {\rm{sin}}\left( {a + b} \right){\rm{sin}}\left( {a - b} \right)\)
\(\; = {\rm{cos}}\left[ {a + b - \left( {a - b} \right)} \right] = {\rm{cos}}2b = 1 - 2{\rm{si}}{{\rm{n}}^2}b.\)
Lời giải
Đáp án đúng là: B
Hàm số \(y = f\left( x \right)\) (có tập xác định \(D\)) là hàm số lẻ nếu với \(\forall x \in D\) thì \( - x \in D\) và \[f\left( { - x} \right) = - f\left( x \right)\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
(1,0 điểm) Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 3\cos \left( {4\pi t - \frac{{2\pi }}{3}} \right)\), với \(t\) là thời gian tính bằng giây và \(x\) là quãng đường tính bằng \[{\rm{cm}}\]. Hãy cho biết trong khoảng thời gian từ 0 đến 5 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
(1,0 điểm) Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 3\cos \left( {4\pi t - \frac{{2\pi }}{3}} \right)\), với \(t\) là thời gian tính bằng giây và \(x\) là quãng đường tính bằng \[{\rm{cm}}\]. Hãy cho biết trong khoảng thời gian từ 0 đến 5 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.