Câu hỏi:

04/11/2025 62 Lưu

Cho hai mặt phẳng \(\left( P \right),\,\left( Q \right)\) cắt nhau theo giao tuyến là đường thẳng \(d\). Đường thẳng \(a\) song song với cả hai mặt phẳng \(\left( P \right),\,\left( Q \right)\). Khẳng định nào sau đây đúng?        

A. \(a,d\) trùng nhau;                              
B. \(a,d\) chéo nhau;        
C. \(a\) song song \(d\);                           
D. \(a,d\) cắt nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} \)\(\overrightarrow {BI} \) cùng hướng;                                                         
B. \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng;
C. \(\overrightarrow {AI} \)\(\overrightarrow {IB} \) ngược hướng;                                                       
D. \(\overrightarrow {AI} \)\(\overrightarrow {BI} \) không cùng phương.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng phương.

Và chúng cùng hướng từ trái sang phải.

Do đó, \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng.

Lời giải

Hướng dẫn giải

a) Ta có:

\(T \cup G\) là tập hợp số học sinh của lớp 10A1 hay \(T \cup G = H\).

\(T \cap G = \emptyset \).

\(H\backslash T\) là tập hợp học sinh của lớp 10A1 không chứa học sinh nam nên \(H\backslash T = G\).

b) Xét phương trình: \(\left( {x + 2} \right)\left( {5{x^2} - 6x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\5{x^2} - 6x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 1\\x = \frac{1}{5}\end{array} \right.\).

Vì \(x \in \mathbb{Z}\) mà \(\frac{1}{5} \notin \mathbb{Z}\) nên \(A = \left\{ { - 2;\,\,1} \right\}\).

Khi đó tập hợp \(A\) có \(2\) phần tử vậy để \(A \cup B\) có đúng 3 phần tử thì một phần tử nữa phải lấy từ tập hợp \(B\) và giả sử đó là phần tử \(b\left( {b \ne  - 2;b \ne 1} \right)\).

Theo đầu bài ta có: \({\left[ {b + \left( { - 2} \right) + 1} \right]^2} = 9\)

\( \Leftrightarrow {\left( {b - 1} \right)^2} = 9\)

\( \Leftrightarrow \left[ \begin{array}{l}b - 1 = 3\\b - 1 =  - 3\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}b = 4\\b =  - 2\end{array} \right.\)

Do đó chỉ có \(b = 4\) là thỏa mãn yêu cầu.

Vì \(b = 4 \in B\) nên ta có \({4^2} - \left( {2m + 1} \right)4 + 2m = 0\)

\( \Leftrightarrow 16 - 8m - 4 + 2m = 0\)

\( \Leftrightarrow 12 - 6m = 0\)

\( \Leftrightarrow m = 2\).

Vậy với \(m = 2\) thì\(A \cup B\) có đúng 3 phần tử và tổng bình phương của chúng bằng 9.

Câu 4

A. \(\left( {0;\,\,5} \right)\);                            
B. \(\left( {0;\,\,0} \right)\);        
C. \(\left( {2;\,\,4} \right)\);                      
D. \(\left( {4;\,\,0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sin x + {\rm{cos}}x = 1\);                               
B. \(1 + {\sin ^2}x = \frac{1}{{{{\cot }^2}x}}\);         
C. \({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\);                                                         
D. \[\tan x = \frac{{{\rm{cos}}\,x}}{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau;
B. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau;
C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau;
D. Hai tam giác có diện tích bằng nhau là điều kiện cần và đủ để chúng bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP