Câu hỏi:

05/11/2025 53 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M\) là trung điểm của \(SA.\) Giao điểm của đường thẳng \(SB\) và mặt phẳng \(\left( {CMD} \right)\)

A. Không có giao điểm.                                  
B. Giao điểm của đường thẳng \(SB\)\(MC.\)
C. Trung điểm của đoạn thẳng \(SB\).         
D. Giao điểm của đường thẳng \(SB\)\(MD.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Lời giải  Đáp án đúng là: B (ảnh 1)

\(M\) là điểm chung của \(SA\)\(\left( {CMD} \right)\), nên giao điểm của đường thẳng \(SB\) và mặt phẳng \(\left( {CMD} \right)\) (nếu có) sẽ thuộc giao tuyến của \(\left( {SAB} \right)\)\(\left( {CMD} \right)\).

Ta có \(\left( {SAB} \right)\)\(\left( {CMD} \right)\) có điểm chung là \(M\)\(AB//CD\) nên giao tuyến của \(\left( {SAB} \right)\)\(\left( {CMD} \right)\) là đường thẳng \(d\) qua \(M\) và song song \(AB,CD\).

Gọi \(N = d \cap SB\), khi đó, \(MN//AB\), mà \(M\) là trung điểm \(SA\), suy ra, \(N\) là trung điểm \(SB\).

Vậy giao điểm của đường thẳng \(SB\) và mặt phẳng \(\left( {CMD} \right)\) là trung điểm \(SB\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ