Cho hình thoi \(ABCD\) cạnh \(a\), \(\widehat {BAD} = 60^\circ \). Gọi \(O\) là giao điểm của hai đường chéo. Độ dài vectơ \(\overrightarrow {OA} - \overrightarrow {OC} \) là
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B

Xét tam giác \(ABD\), có: \(AB = AD = a\) nên \(ABD\) cân tại \(A\)
Mà \(\widehat {BAD} = 60^\circ \) suy ra tam giác \(ABD\) đều
Khi đó \(AO = \frac{{a\sqrt 3 }}{2}\)
Ta có: \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {CA} \)
\( \Rightarrow \left| {\overrightarrow {OA} - \overrightarrow {OC} } \right| = \left| {\overrightarrow {CA} } \right| = CA = 2.AO = 2.\frac{{a\sqrt 3 }}{2} = a\sqrt 3 \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Vì \[AM = \frac{1}{4}AB\] và hai vectơ \(\overrightarrow {AM} ,\,\,\overrightarrow {AB} \) cùng hướng nên \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \), do đó đáp án B đúng.
Ta có: \[MA = \frac{1}{3}MB\] và hai vectơ \(\overrightarrow {MA} ,\,\,\overrightarrow {MB} \) ngược hướng nên \(\overrightarrow {MA} = - \frac{1}{3}\overrightarrow {MB} \) hay \(\overrightarrow {MB} = - 3\overrightarrow {MA} \), do đó đáp án A sai và đáp án D đúng.
\[BM = \frac{3}{4}BA\] và hai vectơ \(\overrightarrow {BM} ,\,\,\overrightarrow {BA} \) cùng hướng nên \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \), do đó đáp án C đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có \[\overrightarrow {IA} = - 2\overrightarrow {IB} \]\[ \Rightarrow \overrightarrow {IA} = - \frac{2}{3}\overrightarrow {AB} \].
Vậy \[\overrightarrow {IC} = \overrightarrow {IA} + \overrightarrow {AC} = - \frac{2}{3}\overrightarrow {AB} + \overrightarrow {AC} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
