Câu hỏi:

05/11/2025 144 Lưu

Cho hình chóp\(S.ABCD\) có đáy là hình thang với các cạnh đáy là \(AB\)\(CD.\) Gọi \(\left( {ACI} \right)\) lần lượt là trung điểm của \(AD\)\(BC\)\(G\) là trọng tâm của tam giác \(SAB.\) Giao tuyến của \(\left( {SAB} \right)\)\(\left( {IJG} \right)\)

A. \(SC.\)
B. đường thẳng qua \(S\) và song song với \(AB.\)
C. đường thẳng qua \(G\) và song song với \(DC.\)
D. đường thẳng qua \(G\) và cắt \(BC.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: C

Ta có: \(I,J\) lần lượt là trung điểm của \(AD\)\(BC\)

\( \Rightarrow IJ\) là đường trunh bình của hình thang \(ABCD \Rightarrow IJ\,{\rm{//}}\,AB\,{\rm{//}}\,CD.\)

Gọi \(d = \left( {SAB} \right) \cap \left( {IJG} \right)\)

Ta có: \(G\) là điểm chung giữa hai mặt phẳng \(\left( {SAB} \right)\)\(\left( {IJG} \right)\)

Mặt khác:Lời giải  Đáp án đúng là: C (ảnh 1)

Mặt khác: \(\left\{ \begin{array}{l}\left( {SAB} \right) \supset AB;\left( {IJG} \right) \supset IJ\\AB\parallel IJ\end{array} \right.\)

\( \Rightarrow \)Giao tuyến \(d\) của \(\left( {SAB} \right)\)\(\left( {IJG} \right)\) là đường thẳng qua \(G\) và song song với \(AB\)\[IJ.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác \(AHB\) vuông tại \(H\), có:

\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)

\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)

\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).

\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)

\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)

Áp dụng định lí sin trong tam giác \(ABC\), có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)

Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;     
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 3

A. \(\overrightarrow {OA} + \overrightarrow {OB} - \overrightarrow {EO} = \overrightarrow 0 \);                                 
B. \(\overrightarrow {BC} - \overrightarrow {FE} = \overrightarrow {AD} \); 
C. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {EB} - \overrightarrow {OC} \); 
D. \(\overrightarrow {AB} + \overrightarrow {CD} - \overrightarrow {FE} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(1\);                        
B. \(2\);                        
C. \(3\);                                     
D. \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a > 0,\,\,b < 0,\,\,c > 0\);                                                                           
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\);                                                                           
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M = 10\);             
B. \(M = 0\);                
C. \(M = + \infty \);                                 
D. \(M \in \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP