Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = 3{x^2} + 1\), trục hoành và hai đường thẳng \(x = 0,x = 2\) bằng
Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = 3{x^2} + 1\), trục hoành và hai đường thẳng \(x = 0,x = 2\) bằng
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \frac{1}{5}\int {{{\left( {t + 3} \right)}^{\frac{1}{3}}}{\rm{d}}t} = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} + C\].
\[h\left( 0 \right) = 0 \Leftrightarrow \frac{{9\sqrt[3]{3}}}{{20}} + C = 0 \Leftrightarrow C = - \frac{{9\sqrt[3]{3}}}{{20}} \to h\left( t \right) = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}}\].
\[h\left( t \right) = 2,1 \Leftrightarrow \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}} = 2,1 \Leftrightarrow {\left( {t + 3} \right)^{\frac{4}{3}}} \approx 18,33 \Rightarrow t \approx 6\].
Vậy sau khi bơm khoảng 6 giờ thì độ sâu của mực nước trong hồ là 2,1 m.
Đáp án: 6.
Lời giải
a) Đúng. Doanh thu sau 12 năm của máy\(A\) là
\(R\left( {12} \right) = \int\limits_0^{12} {R'\left( t \right){\rm{d}}t} = \int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{d}}t} \) (triệu đồng).
b) Đúng. Chi phí vận hành và bảo trì của máy \(A\) là \(C\left( t \right) = \int {\left( {48 + 12{t^2}} \right){\rm{d}}t} \)\( = 48t + 4{t^3} + c\).
Chi phí ban đầu là 0, tức là \(C\left( 0 \right) = 0 \Rightarrow c = 0\). Do đó, \(C\left( t \right) = 48t + 4{t^3}\).
Tổng chi phí trong 6 năm là \(C\left( 6 \right) = 48 \cdot 6 + 4 \cdot {6^3} = 1152\) (triệu đồng).
c) Sai. Ta có \[R\left( t \right) = \int {\left( {650 - 3{t^2}} \right){\rm{d}}t} = 650t - {t^3} + b\].
Từ lúc máy \(A\) bắt đầu hoạt động \(\left( {t = 0} \right)\) thì \(R\left( 0 \right) = 0 \Rightarrow b = 0\). Do đó, \(R\left( t \right) = 650t - {t^3}\).
Lợi nhuận do máy \(A\) tạo ra là \(P\left( t \right) = R\left( t \right) - C\left( t \right) = \left( {650t - {t^3}} \right) - \left( {48t + 4{t^3}} \right) = 602t - 5{t^3}\).
Ta có \(P'\left( t \right) = 602 - 15{t^2} = 0 \Rightarrow t = \sqrt {\frac{{602}}{{15}}} \,\,\,\left( {{\rm{do}}\,t \ge 0} \right)\).
Lập bảng biến thiên ta kết luận được lợi nhuận đạt cực đại tại \(t = \sqrt {\frac{{602}}{{15}}} \approx 6,33\) (năm) và sẽ bắt đầu giảm ngay sau đó nên tuổi thọ hữu ích không thể là 8 năm.
Lưu ý: Ta có thể xác định ngay \(P'\left( t \right) = R'\left( t \right) - C'\left( t \right) = 602 - 15{t^2}\) mà không cần xác định \(R\left( t \right)\).
d) Sai. Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là
\(\int\limits_0^{\sqrt {\frac{{602}}{{15}}} } {\left( { - 15{t^2} + 602} \right){\rm{d}}t} \)\( \approx 2542,5\) (triệu đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


