Câu hỏi:

05/11/2025 136 Lưu

Gọi H là hình phẳng giới hạn bởi các đồ thị hàm số \(y = \sqrt x ,y = 2{e^x}\) và hai đường thẳng \(x = 0,x = 4.\)

a) Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\)\(S = \pi \int\limits_0^4 {x\,{\rm{d}}x} \).

b) Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\) Khi đó, \(V = 2\pi \left( {{e^8} - 1} \right)\).

c) Diện tích của hình H\({S_H} = 2{e^4} - \frac{{16}}{3}\).

d) Thể tích khối tròn xoay giới hạn bởi hình H khi quay quanh trục Ox\(2\pi \left( {{e^8} - 5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\)\(S = \int\limits_0^4 {\sqrt x \,{\rm{d}}x.} \)

b) Đúng. Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\)

Khi đó, \[V = \pi \int\limits_0^4 {{{\left( {2{e^x}} \right)}^2}{\rm{d}}x} = \pi \int\limits_0^4 {4{e^{2x}}{\rm{d}}x} = \left. {2\pi {e^{2x}}} \right|_0^4 = 2\pi \left( {{e^8} - 1} \right)\].

c) Sai. \[2{e^x} - \sqrt x > 0,\forall x \in \left[ {0;4} \right]\] nên diện tích của hình H

\[{S_H} = \int\limits_0^4 {\left| {2{e^x} - \sqrt x } \right|{\rm{d}}x = \int\limits_0^4 {\left( {2{e^x} - \sqrt x } \right){\rm{d}}x} = } \left. {\left( {2{e^x} - \frac{2}{3}x\sqrt x } \right)} \right|_0^4 = 2{e^4} - \frac{{22}}{3}\].

d) Đúng. Thể tích khối tròn xoay giới hạn bởi hình H khi quay quanh trục Ox

 \(V = \pi \int\limits_0^4 {\left| {{{\left( {2{e^x}} \right)}^2} - {{\left( {\sqrt x } \right)}^2}} \right|{\rm{d}}x} = \pi \int\limits_0^4 {\left| {4{e^{2x}} - x} \right|{\rm{d}}x} = \pi \int\limits_0^4 {\left( {4{e^{2x}} - x} \right){\rm{d}}x} = \left. {\pi \left( {2{e^{2x}} - \frac{{{x^2}}}{2}} \right)} \right|_0^4 = 2\pi \left( {{e^8} - 5} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \frac{1}{5}\int {{{\left( {t + 3} \right)}^{\frac{1}{3}}}{\rm{d}}t} = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} + C\].

\[h\left( 0 \right) = 0 \Leftrightarrow \frac{{9\sqrt[3]{3}}}{{20}} + C = 0 \Leftrightarrow C = - \frac{{9\sqrt[3]{3}}}{{20}} \to h\left( t \right) = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}}\].

\[h\left( t \right) = 2,1 \Leftrightarrow \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}} = 2,1 \Leftrightarrow {\left( {t + 3} \right)^{\frac{4}{3}}} \approx 18,33 \Rightarrow t \approx 6\].

Vậy sau khi bơm khoảng 6 giờ thì độ sâu của mực nước trong hồ là 2,1 m.

Đáp án: 6.

Lời giải

 

Media VietJack

Chọn hệ trục \[Oxy\] sao cho gốc toạ độ \[O\] trùng với giao điểm \[AB,CD\].

Đường tròn lớn có phương trình: \[{x^2} + {y^2} = 25 \Rightarrow y = \pm \sqrt {25 - {x^2}} \].

Ta có \[OA = OB = OC = OD = \frac{4}{2} = 2\].

Đường tròn nhỏ có tâm trên trục \[Ox\]\[\left( {4;0} \right)\] nên có phương trình:

\[{\left( {x - 4} \right)^2} + {y^2} = 4 \Rightarrow y = \pm \sqrt {4 - {{\left( {x - 4} \right)}^2}} \].

Ta có: \[\sqrt {25 - {x^2}} = \sqrt {4 - {{\left( {x - 4} \right)}^2}} \Leftrightarrow x = \frac{{37}}{8}\].

Gọi \(H\) là phần hình phẳng gạch chéo.

Ta có hình phẳng \(H\) giới hạn bởi các đường \[y = \sqrt {25 - {x^2}} ,y = \sqrt {4 - {{\left( {x - 4} \right)}^2}} ,y = 0\].

Đặt \({H_1} = \left\{ {y = \sqrt {4 - {{\left( {x - 4} \right)}^2}} ,y = 0,x = 2,x = \frac{{37}}{8}} \right\}\); \({H_2} = \left\{ {y = \sqrt {25 - {x^2}} ,y = 0,x = \frac{{37}}{8},x = 5} \right\}\).

Diện tích của hình \({H_1}\) \[{S_{{H_1}}} = \int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x\].

Diện tích của hình \({H_2}\)\({S_{{H_2}}} = \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x\).

Khi đó diện tích của hình \(H\) là: \[{S_H} = \int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x + \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x\].

Diện tích của đường tròn lớn là: \({S_1} = \pi \cdot {5^2} = 25\pi \).

Diện tích phần sơn 1 mặt của chi tiết máy

\[S = 25\pi - 8{S_H} = 25\pi - 8\left( {\int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x + \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x} \right) \approx 39,7\,({\rm{d}}{{\rm{m}}^{\rm{2}}}) = 0,397({{\rm{m}}^{\rm{2}}})\].

Chi phí để sơn hoàn thiện chi tiết máy: \[2 \cdot 0,397 \cdot 82 \approx 65\] (nghìn đồng).

Đáp án: 65.