Câu hỏi:

05/11/2025 13 Lưu

Gọi H là hình phẳng giới hạn bởi các đồ thị hàm số \(y = \sqrt x ,y = 2{e^x}\) và hai đường thẳng \(x = 0,x = 4.\)

a) Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\)\(S = \pi \int\limits_0^4 {x\,{\rm{d}}x} \).

b) Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\) Khi đó, \(V = 2\pi \left( {{e^8} - 1} \right)\).

c) Diện tích của hình H\({S_H} = 2{e^4} - \frac{{16}}{3}\).

d) Thể tích khối tròn xoay giới hạn bởi hình H khi quay quanh trục Ox\(2\pi \left( {{e^8} - 5} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\)\(S = \int\limits_0^4 {\sqrt x \,{\rm{d}}x.} \)

b) Đúng. Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\)

Khi đó, \[V = \pi \int\limits_0^4 {{{\left( {2{e^x}} \right)}^2}{\rm{d}}x} = \pi \int\limits_0^4 {4{e^{2x}}{\rm{d}}x} = \left. {2\pi {e^{2x}}} \right|_0^4 = 2\pi \left( {{e^8} - 1} \right)\].

c) Sai. \[2{e^x} - \sqrt x > 0,\forall x \in \left[ {0;4} \right]\] nên diện tích của hình H

\[{S_H} = \int\limits_0^4 {\left| {2{e^x} - \sqrt x } \right|{\rm{d}}x = \int\limits_0^4 {\left( {2{e^x} - \sqrt x } \right){\rm{d}}x} = } \left. {\left( {2{e^x} - \frac{2}{3}x\sqrt x } \right)} \right|_0^4 = 2{e^4} - \frac{{22}}{3}\].

d) Đúng. Thể tích khối tròn xoay giới hạn bởi hình H khi quay quanh trục Ox

 \(V = \pi \int\limits_0^4 {\left| {{{\left( {2{e^x}} \right)}^2} - {{\left( {\sqrt x } \right)}^2}} \right|{\rm{d}}x} = \pi \int\limits_0^4 {\left| {4{e^{2x}} - x} \right|{\rm{d}}x} = \pi \int\limits_0^4 {\left( {4{e^{2x}} - x} \right){\rm{d}}x} = \left. {\pi \left( {2{e^{2x}} - \frac{{{x^2}}}{2}} \right)} \right|_0^4 = 2\pi \left( {{e^8} - 5} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \frac{1}{5}\int {{{\left( {t + 3} \right)}^{\frac{1}{3}}}{\rm{d}}t} = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} + C\].

\[h\left( 0 \right) = 0 \Leftrightarrow \frac{{9\sqrt[3]{3}}}{{20}} + C = 0 \Leftrightarrow C = - \frac{{9\sqrt[3]{3}}}{{20}} \to h\left( t \right) = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}}\].

\[h\left( t \right) = 2,1 \Leftrightarrow \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}} = 2,1 \Leftrightarrow {\left( {t + 3} \right)^{\frac{4}{3}}} \approx 18,33 \Rightarrow t \approx 6\].

Vậy sau khi bơm khoảng 6 giờ thì độ sâu của mực nước trong hồ là 2,1 m.

Đáp án: 6.

Lời giải

a) Sai. Ta có \[h\left( t \right) = \int {v\left( t \right){\rm{dt}} = - 0,04{t^3} + 0,6{t^2} + C} \].

Tại thời điểm xuất phát \(\left( {t = 0} \right)\), độ cao của khinh khí cầu là 520 m nên

\[h\left( 0 \right) = 520 \Rightarrow C = 520\].

Vậy \[h\left( t \right) = - 0,04{t^3} + 0,6{t^2} + 520\].

b) Đúng. Tại thời điểm \(t = 3\) phút, độ cao của khinh khí cầu là \(h\left( 3 \right) = 524,32\) m.

c) Đúng. Ta có \(h'\left( t \right) = v\left( t \right) = - 0,12{t^2} + 1,2t\), suy ra \(h'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 10\end{array} \right.\).

Ta có bảng biến thiên:

Media VietJack

Vậy độ cao tối đa của khinh khí cầu là 540 m.

d) Đúng. Khi trở lại độ cao như lúc xuất phát thì

\(h\left( t \right) = 520 \Leftrightarrow - 0,04{t^3} + 0,6{t^2} + 520 = 520 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 15\end{array} \right.\).

Vậy sau 15 phút thì khinh khí cầu quay trở lại độ cao như lúc đầu.