(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\)
a) Nêu cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a.\)
b) Trong mặt phẳng \((CDMN)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\)
a) Nêu cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a.\)
b) Trong mặt phẳng \((CDMN)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
Quảng cáo
Trả lời:

a) Trong mặt phẳng \((SAC)\), gọi \(M\) là giao điểm của \(CI\) và \(SA,\,\,CI \subset (ICD)\) nên \(M \in (ICD)\).
Trong mặt phẳng \((SBD)\), gọi \(N\) là giao điểm của \(DI\) và \(SB,\,\,DI \subset (ICD)\) nên \(N \in (ICD)\).
Ta có \((KCD) \cap (SAB) = MN\).
Mà \(AB\,{\rm{//}}\,CD\) nên \(MN\,{\rm{//}}\,CD\).
Theo định lí Menelaus, trong tam giác \(SOA\), ta có: \[\frac{{SM}}{{MA}}\,.\,\frac{{AC}}{{CO}}\,.\,\frac{{OI}}{{IS}} = 1\].
Hay \[\frac{{SM}}{{MA}}\,.\,2\,.\,1 = 1\] suy ra \[\frac{{SM}}{{MA}} = \frac{1}{2}\] nên \[\frac{{SM}}{{SA}} = \frac{1}{3}\].
Ta có \(MN\,{\rm{//}}\,AB\) nên \[\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}}\].
Vậy \(MN = \frac{1}{3}a\).
b) \(K \in CN;\,\,CN \subset (SBC)\) nên \(K \in (SBC)\).
\(K \in DM;\,\,DM \subset (SAD)\) nên \(K \in (SAD)\).
Ta có \(S\) và \(K\) là hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\) nên \(SK\) là giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\).
Mà \(AD\,{\rm{//}}\,BC\) nên \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ