Câu hỏi:

05/11/2025 35 Lưu

(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\)\(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\)

a) Nêu cách xác định hai điểm \(M\)\(N\). Cho \(AB = a\). Tính \(MN\) theo \(a.\)

b) Trong mặt phẳng \((CDMN)\), gọi \(K\) là giao điểm của \(CN\)\(DM\). Chứng minh \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\) (ảnh 1)

a) Trong mặt phẳng \((SAC)\), gọi \(M\) là giao điểm của \(CI\)\(SA,\,\,CI \subset (ICD)\) nên \(M \in (ICD)\).

Trong mặt phẳng \((SBD)\), gọi \(N\) là giao điểm của \(DI\)\(SB,\,\,DI \subset (ICD)\) nên \(N \in (ICD)\).

Ta có \((KCD) \cap (SAB) = MN\).

\(AB\,{\rm{//}}\,CD\) nên \(MN\,{\rm{//}}\,CD\).

Theo định lí Menelaus, trong tam giác \(SOA\), ta có: \[\frac{{SM}}{{MA}}\,.\,\frac{{AC}}{{CO}}\,.\,\frac{{OI}}{{IS}} = 1\].

Hay \[\frac{{SM}}{{MA}}\,.\,2\,.\,1 = 1\] suy ra \[\frac{{SM}}{{MA}} = \frac{1}{2}\] nên \[\frac{{SM}}{{SA}} = \frac{1}{3}\].

Ta có \(MN\,{\rm{//}}\,AB\) nên \[\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}}\].

Vậy \(MN = \frac{1}{3}a\).

b) \(K \in CN;\,\,CN \subset (SBC)\) nên \(K \in (SBC)\).

\(K \in DM;\,\,DM \subset (SAD)\) nên \(K \in (SAD)\).

Ta có \(S\)\(K\) là hai điểm chung của hai mặt phẳng \((SAD)\)\((SBC)\) nên \(SK\) là giao tuyến của hai mặt phẳng \((SAD)\)\((SBC)\).

\(AD\,{\rm{//}}\,BC\) nên \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ