(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\)
a) Nêu cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a.\)
b) Trong mặt phẳng \((CDMN)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \((ICD)\) cắt \(SA,\,\,SB\) lần lượt tại \(M,\,\,N.\)
a) Nêu cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a.\)
b) Trong mặt phẳng \((CDMN)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
Quảng cáo
Trả lời:

a) Trong mặt phẳng \((SAC)\), gọi \(M\) là giao điểm của \(CI\) và \(SA,\,\,CI \subset (ICD)\) nên \(M \in (ICD)\).
Trong mặt phẳng \((SBD)\), gọi \(N\) là giao điểm của \(DI\) và \(SB,\,\,DI \subset (ICD)\) nên \(N \in (ICD)\).
Ta có \((KCD) \cap (SAB) = MN\).
Mà \(AB\,{\rm{//}}\,CD\) nên \(MN\,{\rm{//}}\,CD\).
Theo định lí Menelaus, trong tam giác \(SOA\), ta có: \[\frac{{SM}}{{MA}}\,.\,\frac{{AC}}{{CO}}\,.\,\frac{{OI}}{{IS}} = 1\].
Hay \[\frac{{SM}}{{MA}}\,.\,2\,.\,1 = 1\] suy ra \[\frac{{SM}}{{MA}} = \frac{1}{2}\] nên \[\frac{{SM}}{{SA}} = \frac{1}{3}\].
Ta có \(MN\,{\rm{//}}\,AB\) nên \[\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}}\].
Vậy \(MN = \frac{1}{3}a\).
b) \(K \in CN;\,\,CN \subset (SBC)\) nên \(K \in (SBC)\).
\(K \in DM;\,\,DM \subset (SAD)\) nên \(K \in (SAD)\).
Ta có \(S\) và \(K\) là hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\) nên \(SK\) là giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\).
Mà \(AD\,{\rm{//}}\,BC\) nên \[SK\,{\rm{//}}\,BC\,{\rm{//}}\,AD\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.
Lời giải
Giả sử chiều cao của ngọn núi là \(CH\).
Ta có: \(\widehat {BAC} = 90^\circ - 30^\circ = 60^\circ \), \(\widehat {CBA} = 90^\circ + 15^\circ 30' = 90^\circ + 15,5^\circ = 105,5^\circ \).
Suy ra \(\widehat {ACB} = 180^\circ - \left( {60^\circ + 105,5^\circ } \right) = 14,5^\circ \).
Áp dụng định lí sin trong tam giác \(ABC\) ta có: \(\frac{{AC}}{{\sin \widehat {CBA}}} = \frac{{AB}}{{\sin \widehat {ACB}}}\).
Suy ra \(AC = \frac{{AB \cdot \sin \widehat {CBA}}}{{\sin \widehat {ACB}}} = \frac{{70 \cdot \sin 105,5^\circ }}{{\sin 14,5^\circ }} \approx 269,41\).
Tam giác \(ACH\) vuông tại \(H\) nên \(CH = AC \cdot \sin \widehat {CAH} \approx 269,41 \cdot \sin 30^\circ \approx 135\) (m).
Vậy chiều cao của ngọn núi xấp xỉ bằng 135 mét.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
