Câu hỏi:

05/11/2025 49 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(SA \bot \left( {ABCD} \right)\). (Tham khảo hình vẽ )

Media VietJack

a) Đường thẳng \(CD\) và đường thẳng \(SA\) vuông góc với nhau.

b) Góc giữa đường thẳng \(BC\) và đường thẳng \(SD\) bằng góc giữa thẳng \(AD\) và đường thẳng \(SD\).

c) Đường thẳng \(BD\) vuông góc với mặt phẳng \(\left( {SAC} \right)\).

d) \(\widehat {SCA}\) là góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\).

b) Đúng. Ta có \(BC\,{\rm{//}}\,AD\) nên góc giữa thẳng \(BC\) và đường thẳng \(SD\) bằng góc giữa thẳng \(AD\) và đường thẳng \(SD\).

c) Đúng. Vì \[ABCD\] là hình vuông \( \Rightarrow AC \bot BD\).

\(SA \bot \left( {ABCD} \right) \Rightarrow BD \bot SA\)\( \Rightarrow BD \bot \left( {SAC} \right)\).

d) Sai. Ta có \(SC \cap \left( {SAD} \right) = S\).

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

Suy ra góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\)\(\widehat {DSC}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(CD \bot SC.\)     
B. \(CD \bot SA.\)      
C. \[BC \bot AB.\]        
D. \(SA \bot AB.\)

Lời giải

Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.

Lời giải

Media VietJack

a) Đúng.từ giả thiết, ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).

Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

b) Sai. \(ABCD\) là hình chữ nhật nên\(AC\) không vuông góc với \(BD\), từ đó ta suy ra được mặt phẳng \(\left( {SAC} \right)\) không vuông góc với mặt phẳng \(\left( {SBD} \right)\).

c) Sai. Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot AD}\\{CD \bot SA{\rm{ }}\left( {{\rm{do }}SA \bot \left( {ABCD} \right)} \right)}\end{array} \Rightarrow CD \bot \left( {SAD} \right)} \right. \Rightarrow CD \bot SD\).

Từ đó suy ra \(\widehat {ADS}\) là một góc phẳng nhị diện của góc nhị diện \(\left[ {A,DC,S} \right]\).

Tam giác \(SAD\) vuông tại \(A\) nên \(\tan \widehat {ADS} = \frac{{SA}}{{AD}} = \frac{{2a\sqrt 3 }}{{2a}} = \sqrt 3 \), suy ra \(\widehat {ADS} = 60^\circ \).

Vậy số đo của góc nhị diện \(\left[ {A,DC,S} \right]\) bằng \(60^\circ \).

d) Đúng. Vì \(CD \bot \left( {SAD} \right)\). Suy ra \(SD\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {SAD} \right)\).

Do vậy \(\left( {SC,\left( {SAD} \right)} \right) = \left( {SC,SD} \right) = \widehat {CSD}\).

Tam giác \(SAD\) vuông tại \(A\) có: \(SD = \sqrt {S{A^2} + A{D^2}} = 4a;\,\,SC = \sqrt {S{D^2} + C{D^2}} = a\sqrt {17} \).

Tam giác \(SDC\) vuông tại \(D\) có: \({\rm{cos}}\widehat {CSD} = \frac{{SD}}{{SC}} = \frac{{4a}}{{a\sqrt {17} }} = \frac{4}{{\sqrt {17} }}.\) Vậy \({\rm{cos}}\alpha = \frac{4}{{\sqrt {17} }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP