Câu hỏi:

05/11/2025 23 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(SA \bot \left( {ABCD} \right)\). (Tham khảo hình vẽ )

Media VietJack

a) Đường thẳng \(CD\) và đường thẳng \(SA\) vuông góc với nhau.

b) Góc giữa đường thẳng \(BC\) và đường thẳng \(SD\) bằng góc giữa thẳng \(AD\) và đường thẳng \(SD\).

c) Đường thẳng \(BD\) vuông góc với mặt phẳng \(\left( {SAC} \right)\).

d) \(\widehat {SCA}\) là góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot CD\).

b) Đúng. Ta có \(BC\,{\rm{//}}\,AD\) nên góc giữa thẳng \(BC\) và đường thẳng \(SD\) bằng góc giữa thẳng \(AD\) và đường thẳng \(SD\).

c) Đúng. Vì \[ABCD\] là hình vuông \( \Rightarrow AC \bot BD\).

\(SA \bot \left( {ABCD} \right) \Rightarrow BD \bot SA\)\( \Rightarrow BD \bot \left( {SAC} \right)\).

d) Sai. Ta có \(SC \cap \left( {SAD} \right) = S\).

Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

Suy ra góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAD} \right)\)\(\widehat {DSC}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Đúng. \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\). Khi đó \(\left\{ \begin{array}{l}BD \subset \left( {SBD} \right)\\BD \bot \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\).

b) Đúng.  Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

c) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow \)Hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\)\(A\).

\(B,C \in \left( {ABCD} \right) \Rightarrow \) Hình chiếu của \(B,C\) lên mặt phẳng \(\left( {ABCD} \right)\)\(B,C\).

Do đó tam giác \(ABC\) là hình chiếu của tam giác \(SCB\) lên mặt phẳng \(\left( {ABCD} \right)\).

d) Sai. Kẻ \(AK \bot SD\,\,\left( {K \in SD} \right)\). Ta có \(CD \bot AK\,\,\left( {{\rm{do}}\,\,CD \bot \left( {SAD} \right)} \right)\).

Do đó \(AK \bot \left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = AK = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}\).

Lại có \(AB\,{\rm{//}}\,CD\) nên \(AB\,{\rm{//}}\left( {SCD} \right)\), suy ra \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{3}\).

Câu 2

A. \(CD \bot SC.\)     
B. \(CD \bot SA.\)      
C. \[BC \bot AB.\]        
D. \(SA \bot AB.\)

Lời giải

Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.

Câu 5

A. \(\left( {A'B'C'D'} \right)\).         
B. \(\left( {A'ADD'} \right)\).   
C. \(\left( {C'BA'} \right)\).   
D. \(\left( {ACD'} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[V = \frac{{{a^3}}}{2}\].                     
B. \[V = \frac{{3{a^3}\sqrt 2 }}{2}\].    
C. \[V = \frac{{{a^3}\sqrt {18} }}{6}\].          
D. \[V = \frac{{9{a^3}\sqrt 6 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP