Cuộc tranh đuổi giữa chú chuột Jerry và mèo Tom để lấy miếng pho mát. Biết rằng miếng pho mát có dạng khối lăng trụ đứng chiều cao \(5\,{\rm{cm}}\) và độ dài các cạnh đáy lần lượt là \(7\,{\rm{cm}},7\,{\rm{cm,}}\)\(4\,{\rm{cm}}\). Tính thể tích của khối pho mát trên (kết quả làm tròn đến hàng phần mười của centimét khối).

Quảng cáo
Trả lời:
Nửa chu vi của tam giác đáy là \(p = \frac{{4 + 7 + 7}}{2} = 9\) (cm).
Diện tích đáy của khối lăng trụ là \(S = \sqrt {9\left( {9 - 7} \right)\left( {9 - 7} \right)\left( {9 - 4} \right)} = 6\sqrt 5 \) (cm2).
Chiều cao khối lăng trụ là \(h = 5\) (cm).
Thể tích khối pho mát là \(V = Sh = 6\sqrt 5 \cdot 5 = 30\sqrt 5 \approx 67,1\) (cm3).
Đáp án: 67,1.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng. \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\). Khi đó \(\left\{ \begin{array}{l}BD \subset \left( {SBD} \right)\\BD \bot \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\).
b) Đúng. Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).
c) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow \)Hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(A\).
\(B,C \in \left( {ABCD} \right) \Rightarrow \) Hình chiếu của \(B,C\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(B,C\).
Do đó tam giác \(ABC\) là hình chiếu của tam giác \(SCB\) lên mặt phẳng \(\left( {ABCD} \right)\).
d) Sai. Kẻ \(AK \bot SD\,\,\left( {K \in SD} \right)\). Ta có \(CD \bot AK\,\,\left( {{\rm{do}}\,\,CD \bot \left( {SAD} \right)} \right)\).
Do đó \(AK \bot \left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = AK = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}\).
Lại có \(AB\,{\rm{//}}\,CD\) nên \(AB\,{\rm{//}}\left( {SCD} \right)\), suy ra \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{3}\).
Câu 2
Lời giải
Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


