Anh A muốn thuê một chiếc ô tô (có người lái) trong một tuần. Giá thuê xe như sau: từ thứ hai đến thứ sáu phí cố định là 900 nghìn đồng/ ngày và phí tính theo quãng đường di chuyển là 10 nghìn đồng/km còn thứ bảy và chủ nhật thì phí cố định là 1200 nghìn đồng/ngày và phí tính theo quãng đường di chuyển là 15 nghìn đồng/km. Gọi \(x,y\) lần lượt là số km mà anh A đi trong các ngày từ thứ hai đến thứ 6 và trong hai ngày cuối tuần. Viết bất phương trình biểu thị mối liên hệ giữa \(x\) và \(y\) sao cho tổng số tiền anh A phải trả không quá 20 triệu đồng.
A. \[10x + 15y \le 20000\].
B. \[2x + 3y \ge 2620\].
Quảng cáo
Trả lời:
Đáp án đúng là: D
Số tiền thuê xe của anh A từ thứ hai đến thứ sáu là \(900.5 + 10x\) nghìn đồng và hai ngày thứ bảy, chủ nhật là \(1200.2 + 15y\) nghìn đồng.
Để số tiền anh A phải trả không quá 20 triệu đồng thì
\(\left( {900.5 + 10x} \right) + \left( {1200.2 + 15y} \right) \le 20000\)\( \Leftrightarrow 2x + 3y \le 2620\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).
c) Đồ thị hàm số đi qua điểm \(A(0;6)\).
b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).
Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:
\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 = - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b = - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b = - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)
Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).
Câu 2
A. \(\overrightarrow {AN} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \).
B. \(\overrightarrow {AN} = \frac{1}{6}\overrightarrow {AB} - \frac{5}{6}\overrightarrow {AC} \).
Lời giải
Đáp án đúng là: C
Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN} = \frac{1}{6}\overrightarrow {CB} \).
Ta có \(\overrightarrow {AN} = \overrightarrow {AC} + \overrightarrow {CN} = \overrightarrow {AC} + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC} + \frac{1}{6}\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB} + \frac{5}{6}\overrightarrow {AC} \).
Câu 3
A. \(\overrightarrow {AM} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\alpha = 30^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\frac{a}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

