Câu hỏi:

06/11/2025 40 Lưu

Cho \(\Delta ABC\) có \(\widehat A = 135^\circ ,\widehat C = 15^\circ \) và \(b = 12\). Khi đó:

a) \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = \frac{1}{2}R\).

b) \(a = 12\sqrt 2 \).

c) \(c \approx 8,21\).

d) \(R = 15\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) S, d) S

a) \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)

b) Ta có \(\widehat B = 180^\circ  - \left( {\widehat A + \widehat C} \right) = 180^\circ  - \left( {135^\circ  + 15^\circ } \right) = 30^\circ \).

Ta có \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Leftrightarrow \frac{a}{{\sin 135^\circ }} = \frac{b}{{\sin 30^\circ }} = \frac{c}{{\sin 15^\circ }} = 2R\).

Suy ra \(a = \frac{{12.\sin 135^\circ }}{{\sin 30^\circ }} = 12\sqrt 2 \).

c) Ta có \(c = \frac{{12.\sin 15^\circ }}{{\sin 30^\circ }} \approx 6,21\).

d) Ta có \(R = \frac{{12}}{{2\sin 30^\circ }} = 12\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).

c) Đồ thị hàm số đi qua điểm \(A(0;6)\).

b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).

Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:

\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 =  - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b =  - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b =  - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)

Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).

Câu 2

A. \(\overrightarrow {AN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AC} \). 

B. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  - \frac{5}{6}\overrightarrow {AC} \).

C. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).
D. \(\overrightarrow {AN}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho tam giác ABC . Lấy điểm  N thuộc cạnh BC  sao cho NB = 5/6 BC . Hãy phân tích vecto AN  theo các vectơ  vec A  và vec AC . (ảnh 1)

Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN}  = \frac{1}{6}\overrightarrow {CB} \).

Ta có \(\overrightarrow {AN}  = \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {AC}  + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC}  + \frac{1}{6}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Câu 3

A. \(\overrightarrow {AM} \).  

B. \(\overrightarrow {MN} \). 
C. \(\overrightarrow {PB} \). 
D. \(\overrightarrow {AP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(13,5\).

B. \(12\).  
C. \(14,5\).
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP