Cho \(\Delta ABC\) có \(AB = 8,AC = 5,\widehat {BAC} = 60^\circ \). Tính chiều cao \(AH\) của \(\Delta ABC\) (kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:
Trả lời: 4,95
Ta có \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos \widehat {BAC} = 64 + 25 - 2.8.5.\cos 60^\circ = 49\).
Suy ra \(BC = 7\).
Ta có \(p = \frac{{5 + 7 + 8}}{2} = 10\).
\(S = \sqrt {10.\left( {10 - 8} \right).\left( {10 - 5} \right).\left( {10 - 7} \right)} = 10\sqrt 3 \).
Vì \(S = \frac{1}{2}AH.BC\)\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7} \approx 4,95\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).
c) Đồ thị hàm số đi qua điểm \(A(0;6)\).
b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).
Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:
\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 = - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b = - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b = - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)
Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).
Câu 2
A. \(\overrightarrow {AN} = \frac{1}{3}\overrightarrow {AB} + \frac{2}{3}\overrightarrow {AC} \).
B. \(\overrightarrow {AN} = \frac{1}{6}\overrightarrow {AB} - \frac{5}{6}\overrightarrow {AC} \).
Lời giải
Đáp án đúng là: C
Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN} = \frac{1}{6}\overrightarrow {CB} \).
Ta có \(\overrightarrow {AN} = \overrightarrow {AC} + \overrightarrow {CN} = \overrightarrow {AC} + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC} + \frac{1}{6}\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB} + \frac{5}{6}\overrightarrow {AC} \).
Câu 3
A. \(\overrightarrow {AM} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\alpha = 30^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\frac{a}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

