Câu hỏi:

06/11/2025 62 Lưu

Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng \(CD = 60{\rm{m}},\)biết chiều cao của giác kế là \(OC = 1{\rm{m}}\). Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh \(A\) của tháp. Đọc trên giác kế số đo của góc \(\widehat {AOB} = 60^\circ \). Tính chiều cao của ngọn tháp (đơn vị mét) (làm tròn kết quả đến hàng đơn vị)?
Tính chiều cao của ngọn tháp (đơn vị mét) (làm tròn kết quả đến hàng đơn vị)? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 105

Tính chiều cao của ngọn tháp (đơn vị mét) (làm tròn kết quả đến hàng đơn vị)? (ảnh 2)

Tam giác \(OAB\) vuông tại \(B\), có

\(\tan \widehat {AOB} = \frac{{AB}}{{OB}} \Rightarrow AB = \tan 60^\circ .OB = 60\sqrt 3 \;{\rm{m}}{\rm{. }}\)

Vậy chiều cao của ngọn tháp là \(h = AB + OC = (60\sqrt 3  + 1) \approx 105\;{\rm{m}}{\rm{. }}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).

c) Đồ thị hàm số đi qua điểm \(A(0;6)\).

b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).

Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:

\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 =  - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b =  - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b =  - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)

Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).

Câu 2

A. \(\overrightarrow {AN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AC} \). 

B. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  - \frac{5}{6}\overrightarrow {AC} \).

C. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).
D. \(\overrightarrow {AN}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho tam giác ABC . Lấy điểm  N thuộc cạnh BC  sao cho NB = 5/6 BC . Hãy phân tích vecto AN  theo các vectơ  vec A  và vec AC . (ảnh 1)

Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN}  = \frac{1}{6}\overrightarrow {CB} \).

Ta có \(\overrightarrow {AN}  = \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {AC}  + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC}  + \frac{1}{6}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Câu 3

A. \(\overrightarrow {AM} \).  

B. \(\overrightarrow {MN} \). 
C. \(\overrightarrow {PB} \). 
D. \(\overrightarrow {AP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(13,5\).

B. \(12\).  
C. \(14,5\).
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP