Câu hỏi:

06/11/2025 55 Lưu

Một chiếc xe được kéo bởi một lực \(\vec F\) có độ lớn \(50\;{\rm{N}}\), di chuyển theo quãng đường từ \(A\) đến \(B\) có chiều dài \(200\;{\rm{m}}\). Cho biết góc hợp bởi lực \(\vec F\) và \(\overrightarrow {AB} \) bằng \(30^\circ \) và lực \(\vec F\) được phân tích thành hai lực \({\vec F_1},{\vec F_2}\). Gọi \(m,n,k\) lần lượt là công sinh ra bởi các lực \(\vec F,{\vec F_1},\overrightarrow {{F_2}} \) . Khi đó tính \(S = m - n - k\).
Khi đó tính S = m - n - k. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 0

Khi đó tính S = m - n - k. (ảnh 2)

Đặt \(\vec F = \overrightarrow {AN} ,\overrightarrow {{F_1}}  = \overrightarrow {AP} ,\overrightarrow {{F_2}}  = \overrightarrow {AM} \).

Khi đó \(AMNP\) là hình bình hành, mà \(AM \bot AP\) nên \(AMNP\) là hình chữ nhật.

Ta có : \(AN = 50,AM = AN \cdot \cos 30^\circ  = 50 \cdot \frac{{\sqrt 3 }}{2} = 25\sqrt 3 \).

\(AP = MN = \sqrt {A{N^2} - A{M^2}}  = 25.\)

Lực \(\vec F\) sinh ra công \(A = |\vec F| \cdot |\overrightarrow {AB} | \cdot \cos 30^\circ  = 50 \cdot 200 \cdot \frac{{\sqrt 3 }}{2} = 5000\sqrt 3 \;{\rm{J}}\).

Lực \({\vec F_1}\) có độ lớn \(25\;{\rm{N}}\) và tạo với phương dịch chuyển góc \(90^\circ \) nên công sinh ra là \({A_1} = \left| {\overrightarrow {{F_1}} } \right| \cdot |\overrightarrow {AB} | \cdot \cos 90^\circ  = 0\;{\rm{J}}\).

Lực \({\vec F_2}\) có độ lớn \(25\sqrt 3 {\rm{\;N}}\) và tạo với phương dịch chuyển góc \(0^\circ \) nên công \(\sinh \) ra là \({A_2} = \left| {\overrightarrow {{F_2}} } \right| \cdot |\overrightarrow {AB} | \cdot \cos 0^\circ  = 25\sqrt 3  \cdot 200 \cdot 1 = 5000\sqrt 3 \;{\rm{J}}\).

Do đó \(S = m - n - k = 5000\sqrt 3  - 0 - 5000\sqrt 3  = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).

c) Đồ thị hàm số đi qua điểm \(A(0;6)\).

b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).

Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:

\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 =  - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b =  - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b =  - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)

Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).

Câu 2

A. \(\overrightarrow {AN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AC} \). 

B. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  - \frac{5}{6}\overrightarrow {AC} \).

C. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).
D. \(\overrightarrow {AN}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho tam giác ABC . Lấy điểm  N thuộc cạnh BC  sao cho NB = 5/6 BC . Hãy phân tích vecto AN  theo các vectơ  vec A  và vec AC . (ảnh 1)

Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN}  = \frac{1}{6}\overrightarrow {CB} \).

Ta có \(\overrightarrow {AN}  = \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {AC}  + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC}  + \frac{1}{6}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Câu 3

A. \(\overrightarrow {AM} \).  

B. \(\overrightarrow {MN} \). 
C. \(\overrightarrow {PB} \). 
D. \(\overrightarrow {AP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(13,5\).

B. \(12\).  
C. \(14,5\).
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP