CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi \(X\) là biến cố: “ Sản phẩm chọn ra là phế phẩm”; \[I\]là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(A\)”; \[II\] là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(B\)”.

Ta có \(P\left( I \right) = 0,6;P\left( {II} \right) = 0,4;\)\(P\left( {X|I} \right) = 0,01;P\left( {X|II} \right) = 0,02\).

a) Sai. Nếu sản phẩm chọn ra thuộc phân xưởng \(A\) thì xác suất để nó không là phế phẩm là

 \(P\left( {\overline X |I} \right) = 1 - P\left( {X|I} \right) = 1 - 0,01 = 0,99\).

b) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm và thuộc phân xưởng \(A\)

\(P\left( {XI} \right) = P\left( {X|I} \right) \cdot P\left( I \right) = 0,01 \cdot 0,6 = 0,006\).

c) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm là

\(P\left( X \right) = P\left( I \right) \cdot P\left( {X|I} \right) + P\left( {II} \right) \cdot P\left( {X|II} \right)\)\( = 0,6 \cdot 0,01 + 0,4 \cdot 0,02 = 0,014\).

d) Sai. Nếu sản phẩm chọn ra là phế phẩm thì xác suất để nó thuộc phân xưởng \(A\)

\(P\left( {I|X} \right) = \frac{{P\left( {IX} \right)}}{{P\left( X \right)}} = \frac{{0,006}}{{0,014}} = \frac{3}{7}\) .