Câu hỏi:

06/11/2025 67 Lưu

Khảo sát trọng lượng của một số quả mít được trồng trong một nông trường ta có mẫu số liệu sau:

Cân nặng (kg)

\(\left[ {4;6} \right)\)

\(\left[ {6;8} \right)\)

\(\left[ {8;10} \right)\)

\(\left[ {10;12} \right)\)

\(\left[ {12;14} \right)\)

Số quả mít

6

12

19

9

4

Tìm độ lệch tiêu chuẩn của mẫu số liệu trên (kết quả làm tròn đến hàng phần trăm).

A. \(2,19\).              
B. \(8,72\).             
C. \(4,80\).                    
D. \(2,20\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu: \(n = 6 + 12 + 19 + 9 + 4 = 50\).

Ta có bảng sau:

Cân nặng (kg)

\(\left[ {4;6} \right)\)

\(\left[ {6;8} \right)\)

\(\left[ {8;10} \right)\)

\(\left[ {10;12} \right)\)

\(\left[ {12;14} \right)\)

Giá trị đại diện

5

7

9

11

13

Số quả mít

6

12

19

9

4

Trọng lượng trung bình: \(\overline x = \frac{{6 \cdot 5 + 12 \cdot 7 + 19 \cdot 9 + 9 \cdot 11 + 4 \cdot 13}}{{50}} = 8,72\).

Phương sai của mẫu số liệu là:

\({s^2} = \frac{1}{{50}}\left( {6 \cdot {5^2} + 12 \cdot {7^2} + 19 \cdot {9^2} + 9 \cdot {{11}^2} + 4 \cdot {{13}^2}} \right) - {\left( {8,72} \right)^2} = 4,8016\).

Độ lệch chuẩn của mẫu số liệu là: \(s = \sqrt {{s^2}} = \sqrt {4,8016} \approx 2,19\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng tần số ghép nhóm bao gồm tần số tích lũy của mẫu số liệu đã cho như sau:

Doanh số

(triệu đồng)

\(\left[ {20\,;\,30} \right)\)

\(\left[ {30\,;\,40} \right)\)

\(\left[ {40\,;\,50} \right)\)

\(\left[ {50\,;\,60} \right)\)

\(\left[ {60\,;\,70} \right)\)

\(\left[ {70\,;\,80} \right)\)

Số nhân viên

25

20

20

15

14

6

Tần số tích lũy

25

45

65

80

94

100

Với \(n = 100 \Rightarrow \frac{{3n}}{4} = 75\). Nhóm chứa tứ phân vị thứ ba là \(\left[ {50;60} \right)\).

Ta có \({Q_3} = 50 + \frac{{75 - 65}}{{15}} \cdot 10 = \frac{{170}}{3} \approx 56,7\).

Vậy với 25% số nhân viên có doanh số bán hàng cao nhất để trao thưởng thì trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng ít nhất là 56,7 triệu đồng. Chọn C.

Lời giải

Nhóm chứa mốt là \(\left[ {8;9} \right)\).

Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.