Thời gian (đơn vị: phút) truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:
Thời gian (phút)
\(\left[ {9,5;12,5} \right)\)
\(\left[ {12,5;15,5} \right)\)
\(\left[ {15,5;18,5} \right)\)
\(\left[ {18,5;21,5} \right)\)
\(\left[ {21,5;24,5} \right)\)
Số học sinh
3
12
15
24
2
Khoảng tứ phân vị của mẫu số liệu trên là
Thời gian (đơn vị: phút) truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:
|
Thời gian (phút) |
\(\left[ {9,5;12,5} \right)\) |
\(\left[ {12,5;15,5} \right)\) |
\(\left[ {15,5;18,5} \right)\) |
\(\left[ {18,5;21,5} \right)\) |
\(\left[ {21,5;24,5} \right)\) |
|
Số học sinh |
3 |
12 |
15 |
24 |
2 |
Khoảng tứ phân vị của mẫu số liệu trên là
Quảng cáo
Trả lời:
Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).
Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).
Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.
Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).
Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).
Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nhóm chứa mốt là \(\left[ {8;9} \right)\).
Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.
Câu 2
Lời giải
Ta có bảng sau:
|
Chiều cao |
\(\left[ {150;155} \right)\) |
\(\left[ {155;160} \right)\) |
\(\left[ {160;165} \right)\) |
\(\left[ {165;170} \right)\) |
\(\left[ {170;175} \right)\) |
|
Giá trị đại diện |
152,5 |
157,5 |
162,5 |
167,5 |
172,5 |
|
Tần số |
3 |
7 |
10 |
7 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là
\(\bar x = \frac{{3 \cdot 152,5 + 7 \cdot 157,5 + 10 \cdot 162,5 + 7 \cdot 167,5 + 3 \cdot 172,5}}{{30}} = 162,5\).
Phương sai của mẫu số liệu ghép nhóm là
\[{s^2} = \frac{{3 \cdot {{10}^2} + 7 \cdot {5^2} + 10 \cdot {0^2} + 7 \cdot {5^2} + 5 \cdot {{10}^2}}}{{30}} = \frac{{95}}{3}\].
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \(s = \sqrt {\frac{{95}}{3}} = \frac{{\sqrt {285} }}{3}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

