Câu hỏi:

06/11/2025 372 Lưu

Thời gian (đơn vị: phút) truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

Thời gian (phút)

\(\left[ {9,5;12,5} \right)\)

\(\left[ {12,5;15,5} \right)\)

\(\left[ {15,5;18,5} \right)\)

\(\left[ {18,5;21,5} \right)\)

\(\left[ {21,5;24,5} \right)\)

Số học sinh

3

12

15

24

2

Khoảng tứ phân vị của mẫu số liệu trên là

A. 10,75.                 
B. 4,75.          
C. 4,63.       
D. 4,38

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nhóm chứa mốt là \(\left[ {8;9} \right)\).

Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.

Lời giải

Ta có bảng sau:

Chiều cao

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

\(\left[ {170;175} \right)\)

Giá trị đại diện

152,5

157,5

162,5

167,5

172,5

Tần số

3

7

10

7

3

Số trung bình của mẫu số liệu ghép nhóm là

\(\bar x = \frac{{3 \cdot 152,5 + 7 \cdot 157,5 + 10 \cdot 162,5 + 7 \cdot 167,5 + 3 \cdot 172,5}}{{30}} = 162,5\).

Phương sai của mẫu số liệu ghép nhóm là

\[{s^2} = \frac{{3 \cdot {{10}^2} + 7 \cdot {5^2} + 10 \cdot {0^2} + 7 \cdot {5^2} + 5 \cdot {{10}^2}}}{{30}} = \frac{{95}}{3}\].

Độ lệch chuẩn của mẫu số liệu ghép nhóm là \(s = \sqrt {\frac{{95}}{3}} = \frac{{\sqrt {285} }}{3}\). Chọn A.