Câu hỏi:

06/11/2025 5 Lưu

Bạn Trí rất thích nhảy dân. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Trí được thống kê lại ở bảng sau:

Thời gian (phút)

\(\left[ {20;\,25} \right)\)

\(\left[ {25;\,30} \right)\)

\(\left[ {30;\,35} \right)\)

\(\left[ {35;\,40} \right)\)

\(\left[ {40;\;45} \right)\)

Số ngày

6

6

4

1

1

Phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần trăm) là

A. 31,77.              
B. 31,25.                     
C. 31,44.                 
D. 32,25

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu: \(n = 18\). Ta có bảng sau:

Thời gian (phút)

\(\left[ {20;\,25} \right)\)

\(\left[ {25;\,30} \right)\)

\(\left[ {30;\,35} \right)\)

\(\left[ {35;\,40} \right)\)

\(\left[ {40;\;45} \right)\)

Giá trị đại diện

22,5

27,5

32,5

37,5

42,5

Số ngày

6

6

4

1

1

Số trung bình của mẫu số liệu ghép nhóm là:

\[\overline x = \frac{{22,5 \cdot 6 + 27,5 \cdot 6 + 32,5 \cdot 4 + 37,5 \cdot 1 + 42,5 \cdot 1}}{{18}} = \frac{{85}}{3}\].

Phương sai của mẫu số liệu ghép nhóm là

\[{S^2} = \frac{1}{{18}}\left( {22,{5^2} \cdot 6 + 27,{5^2} \cdot 6 + 32,{5^2} \cdot 4 + 37,{5^2} \cdot 1 + 42,{5^2} \cdot 1} \right) - {\left( {\frac{{85}}{3}} \right)^2} = 31,25\]. Chọn B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

Câu 3

A. \({s^2} = 3\).           
B. \({s^2} = 6\).        
C. \({s^2} = 9\).           
D. \({s^2} = \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP