Câu hỏi:

06/11/2025 36 Lưu

Từ một hộp chứa \(11\) quả cầu màu đỏ và \(4\) quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Xác suất để lấy được \(3\) quả cầu màu xanh là

A. \(\frac{{33}}{{91}}\).              
B. \(\frac{4}{{455}}\). 
C. \(\frac{4}{{165}}\).     
D. \(\frac{{24}}{{455}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số phần tử của không gian mẫu \(n\left( \Omega \right) = C_{15}^3\)\( = 455\).

Gọi \(A\) là biến cố: “\(3\) quả cầu lấy được đều là màu xanh”. Suy ra \(n\left( A \right) = C_4^3\)\( = 4\).

Vậy xác suất cần tìm là \(P\left( A \right) = \frac{4}{{455}}\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng tần số ghép nhóm bao gồm tần số tích lũy của mẫu số liệu đã cho như sau:

Doanh số

(triệu đồng)

\(\left[ {20\,;\,30} \right)\)

\(\left[ {30\,;\,40} \right)\)

\(\left[ {40\,;\,50} \right)\)

\(\left[ {50\,;\,60} \right)\)

\(\left[ {60\,;\,70} \right)\)

\(\left[ {70\,;\,80} \right)\)

Số nhân viên

25

20

20

15

14

6

Tần số tích lũy

25

45

65

80

94

100

Với \(n = 100 \Rightarrow \frac{{3n}}{4} = 75\). Nhóm chứa tứ phân vị thứ ba là \(\left[ {50;60} \right)\).

Ta có \({Q_3} = 50 + \frac{{75 - 65}}{{15}} \cdot 10 = \frac{{170}}{3} \approx 56,7\).

Vậy với 25% số nhân viên có doanh số bán hàng cao nhất để trao thưởng thì trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng ít nhất là 56,7 triệu đồng. Chọn C.

Lời giải

Nhóm chứa mốt là \(\left[ {8;9} \right)\).

Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.