Câu hỏi:

06/11/2025 7 Lưu

Các thí sinh tham dự một cuộc thi hoa khôi phải trải qua ba vòng thi: vòng sơ khảo, vòng bán kết và vòng chung kết. Biết rằng, ban tổ chức sẽ chọn ra \(50{\rm{\% }}\) thí sinh đã đăng kí để vào vòng sơ khảo. Khi kết thúc vòng sơ khảo, ban tổ chức sẽ chọn ra \(30{\rm{\% }}\) thí sinh của vòng sơ khảo để vào vòng bán kết. Khi kết thúc vòng bán kết, ban tổ chức sẽ chọn ra \(20{\rm{\% }}\) thí sinh của vòng bán kết để vào vòng chung kết. Chọn ngẫu nhiên 1 thí sinh đăng kí tham dự cuộc thi hoa khôi.

a) Xác suất để thí sinh được chọn lọt vào vòng sơ khảo là \(0,5\).

b) Xác suất để thí sinh được chọn lọt vào vòng bán kết là \(0,3\).

c) Xác suất thí sinh được chọn lọt vào vòng chung kết là \(0,03\).

d) Biết rằng thí sinh được chọn không lọt vào vòng chung kết, xác suất thí sinh đó lọt vào vòng sơ khảo nhỏ hơn \(0,49\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A,B,C\) lần lượt là biến cố thí sinh được chọn lọt vào vòng sơ khảo, vòng bán kết và vòng chung kết.

a) Đúng. Vì có \(50{\rm{\% }}\) thí \({\rm{sinh}}\) lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).

b) Sai. Xác suất để thí sinh lọt vào vòng bán kết là

\({\rm{\;}}P\left( B \right) = P\left( {AB} \right) = P\left( {B\mid A} \right)P\left( A \right) = 0,3 \cdot 0,5 = 0,15\).

c) Đúng. Xác suất để thí sinh lọt vào vòng chung kết là

\(P\left( C \right) = P\left( {ABC} \right) = P\left( {C\mid AB} \right)P\left( {AB} \right) = 0,2 \cdot 0,15 = 0,03\).

d) Sai. Ta có \(P\left( {\overline C \mid A} \right) = 1 - P\left( {C\mid A} \right) = 1 - \frac{{P\left( C \right)}}{{P\left( A \right)}} = 0,94\).

Do đó, \[P\left( {A\mid \overline C } \right) = \frac{{P\left( {\overline C \mid A} \right)P\left( A \right)}}{{P\left( {\overline C } \right)}} = \frac{{0,94 \cdot 0,5}}{{1 - 0,03}} = \frac{{47}}{{97}} \approx 0,485 < 0,49\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

Câu 3

A. \({s^2} = 3\).           
B. \({s^2} = 6\).        
C. \({s^2} = 9\).           
D. \({s^2} = \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP