Các thí sinh tham dự một cuộc thi hoa khôi phải trải qua ba vòng thi: vòng sơ khảo, vòng bán kết và vòng chung kết. Biết rằng, ban tổ chức sẽ chọn ra \(50{\rm{\% }}\) thí sinh đã đăng kí để vào vòng sơ khảo. Khi kết thúc vòng sơ khảo, ban tổ chức sẽ chọn ra \(30{\rm{\% }}\) thí sinh của vòng sơ khảo để vào vòng bán kết. Khi kết thúc vòng bán kết, ban tổ chức sẽ chọn ra \(20{\rm{\% }}\) thí sinh của vòng bán kết để vào vòng chung kết. Chọn ngẫu nhiên 1 thí sinh đăng kí tham dự cuộc thi hoa khôi.
a) Xác suất để thí sinh được chọn lọt vào vòng sơ khảo là \(0,5\).
b) Xác suất để thí sinh được chọn lọt vào vòng bán kết là \(0,3\).
c) Xác suất thí sinh được chọn lọt vào vòng chung kết là \(0,03\).
d) Biết rằng thí sinh được chọn không lọt vào vòng chung kết, xác suất thí sinh đó lọt vào vòng sơ khảo nhỏ hơn \(0,49\).
Quảng cáo
Trả lời:
Gọi \(A,B,C\) lần lượt là biến cố thí sinh được chọn lọt vào vòng sơ khảo, vòng bán kết và vòng chung kết.
a) Đúng. Vì có \(50{\rm{\% }}\) thí \({\rm{sinh}}\) lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).
b) Sai. Xác suất để thí sinh lọt vào vòng bán kết là
\({\rm{\;}}P\left( B \right) = P\left( {AB} \right) = P\left( {B\mid A} \right)P\left( A \right) = 0,3 \cdot 0,5 = 0,15\).
c) Đúng. Xác suất để thí sinh lọt vào vòng chung kết là
\(P\left( C \right) = P\left( {ABC} \right) = P\left( {C\mid AB} \right)P\left( {AB} \right) = 0,2 \cdot 0,15 = 0,03\).
d) Sai. Ta có \(P\left( {\overline C \mid A} \right) = 1 - P\left( {C\mid A} \right) = 1 - \frac{{P\left( C \right)}}{{P\left( A \right)}} = 0,94\).
Do đó, \[P\left( {A\mid \overline C } \right) = \frac{{P\left( {\overline C \mid A} \right)P\left( A \right)}}{{P\left( {\overline C } \right)}} = \frac{{0,94 \cdot 0,5}}{{1 - 0,03}} = \frac{{47}}{{97}} \approx 0,485 < 0,49\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Ta có bảng tần số ghép nhóm bao gồm tần số tích lũy của mẫu số liệu đã cho như sau:
|
Doanh số (triệu đồng) |
\(\left[ {20\,;\,30} \right)\) |
\(\left[ {30\,;\,40} \right)\) |
\(\left[ {40\,;\,50} \right)\) |
\(\left[ {50\,;\,60} \right)\) |
\(\left[ {60\,;\,70} \right)\) |
\(\left[ {70\,;\,80} \right)\) |
|
Số nhân viên |
25 |
20 |
20 |
15 |
14 |
6 |
|
Tần số tích lũy |
25 |
45 |
65 |
80 |
94 |
100 |
Với \(n = 100 \Rightarrow \frac{{3n}}{4} = 75\). Nhóm chứa tứ phân vị thứ ba là \(\left[ {50;60} \right)\).
Ta có \({Q_3} = 50 + \frac{{75 - 65}}{{15}} \cdot 10 = \frac{{170}}{3} \approx 56,7\).
Vậy với 25% số nhân viên có doanh số bán hàng cao nhất để trao thưởng thì trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng ít nhất là 56,7 triệu đồng. Chọn C.
Câu 2
Lời giải
Nhóm chứa mốt là \(\left[ {8;9} \right)\).
Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
