Câu hỏi:

06/11/2025 293 Lưu

Người ta ghi chép lại trọng lượng (gam) một loại cá rô được nuôi trong ao theo một chế độ đặc biệt sau 6 tháng, họ có bảng tần số ghép nhóm sau:

Trọng lượng

\(\left[ {60;70} \right)\)

\(\left[ {70;80} \right)\)

\(\left[ {80;90} \right)\)

\(\left[ {90;100} \right)\)

\(\left[ {100;110} \right)\)

\(\left[ {110;120} \right)\)

Số cá

13

24

55

61

31

16

Tìm trung vị của mẫu số liệu (làm tròn kết quả đến hàng phần chục)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tổng số cá là: \(N = 13 + 24 + 55 + 61 + 31 + 16 = 200\).

Ta có bảng tần số ghép nhóm bao gồm cả tần số tích lũy là:

Trọng lượng

\(\left[ {60;70} \right)\)

\(\left[ {70;80} \right)\)

\(\left[ {80;90} \right)\)

\(\left[ {90;100} \right)\)

\(\left[ {100;110} \right)\)

\(\left[ {110;120} \right)\)

Số cá

13

24

55

61

31

16

Tần số tích lũy

13

37

92

153

184

200

Ta có \(\frac{N}{2} = 100\) nên nhóm chứa trung vị là nhóm \(\left[ {90;\,100} \right)\).

Trung vị của mẫu số liệu trên là \({M_e} = 90 + \frac{{100 - 92}}{{61}} \cdot \left( {100 - 90} \right) = \frac{{5570}}{{61}} \approx 91,3\) (gam).

Đáp án: 91,3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố bệnh nhân được điều trị bằng phác đồ \(A\) thì \(\overline A \) là biến cố bệnh nhân được điều trị bằng phác đồ \(B\). Ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5.\)

Gọi \(X\) là biến cố bệnh nhân được chữa khỏi bệnh. Ta có \(P\left( {X|A} \right) = 0,6;\,\,P\left( {X|\overline A } \right) = 0,7.\)

Gọi \(Y\) là biến cố bệnh nhân bị tác dụng phụ nghiêm trọng. Ta có \(P\left( {Y|A} \right) = 0,05;\,\,P\left( {Y|\overline A } \right) = 0,1.\)

a) Sai. Xác suất bệnh nhân điều trị bằng phác đồ \(A\) và được chữa khỏi bệnh là:

\(P\left( {AX} \right) = P\left( A \right) \cdot P\left( {X|A} \right) = 0,5 \cdot 0,6 = 0,3.\)

b) Đúng. Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:

\(P\left( Y \right) = P\left( A \right) \cdot P\left( {Y|A} \right) + P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right) = 0,5 \cdot 0,05 + 0,5 \cdot 0,1 = 0,075.\)

c) Đúng. Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân được điều trị bằng phác đồ \(B\) là:

\(P\left( {\overline A |Y} \right) = \frac{{P\left( {\overline A Y} \right)}}{{P\left( Y \right)}} = \frac{{P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right)}}{{P\left( Y \right)}} = \frac{{0,5 \cdot 0,1}}{{0,075}} \approx 0,67 > 0,65.\)

d) Đúng. Ta có \(P\left( X \right) = P\left( A \right) \cdot P\left( {X|A} \right) + P\left( {\overline A } \right) \cdot P\left( {X|\overline A } \right) = 0,5 \cdot 0,6 + 0,5 \cdot 0,7 = 0,65.\)

Do biến cố “bệnh nhân được chữa khỏi bệnh” và biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng” là độc lập với nhau. Nên xác suất bệnh nhân khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:

\[P\left( {X\overline Y } \right) = P\left( {X\overline Y |A} \right)P\left( A \right) + P\left( {X\overline Y |\overline A } \right)P\left( {\overline A } \right) = \left[ {0,6 \cdot \left( {1 - 5\% } \right)} \right]0,5 + \left[ {0,7 \cdot \left( {1 - 10\% } \right)} \right]0,5 = 0,6\].

Lời giải

Đồ thị trên chỉ có hai đỉnh bậc lẻ là C E nên ta có thể tìm được một đường đi Euler từ C đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ C đến ECABDEBCE và tổng độ dài của nó là

\(2 + 1 + 3 + 6 + 5 + 4 + 10 = 31\,\,{\rm{(km)}}\).

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến C.

Đường đi ngắn nhất từ \(E\) đến \(C\)\(EBAC\) và có độ dài là \(5 + 1 + 2 = 8\,{\rm{(km)}}\).

Vậy tổng quãng đường đưa thư có thể đi ngắn nhất là \(31 + 8 = 39\,({\rm{km}})\).

Đáp án: 39.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP