Câu hỏi:

06/11/2025 95 Lưu

Trong chuyện cổ tích “Cây tre trăm đốt”, khi không vác được cây tre dài đến \[100\] đốt về nhà, anh Khoai ngồi khóc. Bụt hiện lên, bày cho anh một cách hay: “Con hãy đọc câu thần chú “khắc xuất, khắc xuất” thì cây tre sẽ phân tách ra nhiều thanh nhỏ để con có thể mang được về nhà. Biết rằng sau mỗi câu thần chú như thế thì cây tre \[100\] đốt được tách ra một cách ngẫu nhiên thành các đoạn ngắn có chiều dài \[2\] đốt và \[5\] đốt (có thể chỉ có một loại). Tính xác suất để số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có bảng tần số ghép nhóm bao gồm tần số tích lũy của mẫu số liệu đã cho như sau:

Doanh số

(triệu đồng)

\(\left[ {20\,;\,30} \right)\)

\(\left[ {30\,;\,40} \right)\)

\(\left[ {40\,;\,50} \right)\)

\(\left[ {50\,;\,60} \right)\)

\(\left[ {60\,;\,70} \right)\)

\(\left[ {70\,;\,80} \right)\)

Số nhân viên

25

20

20

15

14

6

Tần số tích lũy

25

45

65

80

94

100

Với \(n = 100 \Rightarrow \frac{{3n}}{4} = 75\). Nhóm chứa tứ phân vị thứ ba là \(\left[ {50;60} \right)\).

Ta có \({Q_3} = 50 + \frac{{75 - 65}}{{15}} \cdot 10 = \frac{{170}}{3} \approx 56,7\).

Vậy với 25% số nhân viên có doanh số bán hàng cao nhất để trao thưởng thì trung tâm thương mại nên khen thưởng các nhân viên có doanh số bán hàng ít nhất là 56,7 triệu đồng. Chọn C.

Lời giải

Nhóm chứa mốt là \(\left[ {8;9} \right)\).

Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.