Câu hỏi:

06/11/2025 764 Lưu

Một đoàn tình nguyện đến một trường tiểu học miền núi để trao tặng 20 suất quà cho 10 em học sinh nghèo học giỏi. Trong 20 suất quà đó gồm 7 chiếc áo mùa đông, 9 thùng sữa tươi và 4 chiếc cặp sách. Tất cả các suất quà đều có giá trị tương đương nhau. Biết rằng mỗi em nhận 2 suất quà khác loại (ví dụ một chiếc áo và một thùng sữa tươi). Trong số các em nhận quà có hai em Hà và Vương. Tính xác suất để hai em đó nhận được suất quà giống nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \[x,y,z\] lần lượt là số lượng các suất quà bao gồm: áo – sữa; áo – cặp; sữa – cặp.

Ta có hệ phương trình: x+y=7y+z =4z+x =9x=6y=1z=3

Vì các suất quà đều có giá trị tương đương nhau nên:

Số cách tặng 6 suất quà gồm áo – sữa; 1 suất quà gồm áo – cặp; 3 suất quà gồm sữa – cặp cho 10 em học sinh là: \[C_{10}^6 \cdot C_4^3 \cdot C_1^1 = 840\] cách.

Số cách tặng quà sao cho hai em Hà và Vương nhận được suất quà giống nhau là:

\[1 \cdot C_8^4 \cdot C_4^3 \cdot C_1^1 + 1 \cdot C_8^1 \cdot C_7^1 \cdot C_6^6 = 336\] cách.

Vậy xác suất để hai em đó nhận được suất quà giống nhau là: \[\frac{{336}}{{840}} = 0,4\].

Đáp án: 0,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố bệnh nhân được điều trị bằng phác đồ \(A\) thì \(\overline A \) là biến cố bệnh nhân được điều trị bằng phác đồ \(B\). Ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5.\)

Gọi \(X\) là biến cố bệnh nhân được chữa khỏi bệnh. Ta có \(P\left( {X|A} \right) = 0,6;\,\,P\left( {X|\overline A } \right) = 0,7.\)

Gọi \(Y\) là biến cố bệnh nhân bị tác dụng phụ nghiêm trọng. Ta có \(P\left( {Y|A} \right) = 0,05;\,\,P\left( {Y|\overline A } \right) = 0,1.\)

a) Sai. Xác suất bệnh nhân điều trị bằng phác đồ \(A\) và được chữa khỏi bệnh là:

\(P\left( {AX} \right) = P\left( A \right) \cdot P\left( {X|A} \right) = 0,5 \cdot 0,6 = 0,3.\)

b) Đúng. Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:

\(P\left( Y \right) = P\left( A \right) \cdot P\left( {Y|A} \right) + P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right) = 0,5 \cdot 0,05 + 0,5 \cdot 0,1 = 0,075.\)

c) Đúng. Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân được điều trị bằng phác đồ \(B\) là:

\(P\left( {\overline A |Y} \right) = \frac{{P\left( {\overline A Y} \right)}}{{P\left( Y \right)}} = \frac{{P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right)}}{{P\left( Y \right)}} = \frac{{0,5 \cdot 0,1}}{{0,075}} \approx 0,67 > 0,65.\)

d) Đúng. Ta có \(P\left( X \right) = P\left( A \right) \cdot P\left( {X|A} \right) + P\left( {\overline A } \right) \cdot P\left( {X|\overline A } \right) = 0,5 \cdot 0,6 + 0,5 \cdot 0,7 = 0,65.\)

Do biến cố “bệnh nhân được chữa khỏi bệnh” và biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng” là độc lập với nhau. Nên xác suất bệnh nhân khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:

\[P\left( {X\overline Y } \right) = P\left( {X\overline Y |A} \right)P\left( A \right) + P\left( {X\overline Y |\overline A } \right)P\left( {\overline A } \right) = \left[ {0,6 \cdot \left( {1 - 5\% } \right)} \right]0,5 + \left[ {0,7 \cdot \left( {1 - 10\% } \right)} \right]0,5 = 0,6\].

Lời giải

Đồ thị trên chỉ có hai đỉnh bậc lẻ là C E nên ta có thể tìm được một đường đi Euler từ C đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ C đến ECABDEBCE và tổng độ dài của nó là

\(2 + 1 + 3 + 6 + 5 + 4 + 10 = 31\,\,{\rm{(km)}}\).

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến C.

Đường đi ngắn nhất từ \(E\) đến \(C\)\(EBAC\) và có độ dài là \(5 + 1 + 2 = 8\,{\rm{(km)}}\).

Vậy tổng quãng đường đưa thư có thể đi ngắn nhất là \(31 + 8 = 39\,({\rm{km}})\).

Đáp án: 39.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP