Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ

\(y = {x^2} + 2x;\quad (a = 1,b = 2,c = 0)\).

Tập xác định: \(D = \mathbb{R}\).

Tọa độ đỉnh \(I\) của parabol:

\({x_I} =  - \frac{b}{{2a}} =  - 1,{y_I} = {( - 1)^2} + 2 \cdot ( - 1) =  - 1{\rm{ hay }}I( - 1; - 1){\rm{. }}\)

Định hướng cho bảng biến thiên: Do \(a = 1 > 0\) nên bề lõm parabol hướng lên.

Bảng biến thiên:

Cho hàm số y = x mũ 2 + 2x. Khi đó: (ảnh 1)

Kết luận:

- Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\).

- Giá trị nhỏ nhất của hàm số là \({y_{\min }} =  - 1\), khi \(x =  - 1\). (Hàm số không có giá trị lớn nhất).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) S, d) Đ

Cho tam giác ABC có G là trọng tâm. Gọi D là điểm đối xứng của B qua G,M là trung điểm của BC. Khi đó: (ảnh 1)

a) \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD} \).

b) Ta có: \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{1}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \).

c) Ta có: \(\overrightarrow {CD}  = \overrightarrow {CB}  + \overrightarrow {BD}  = \overrightarrow {AB}  - \overrightarrow {AC}  + \frac{4}{3}\overrightarrow {BN} \).

d) Ta có: \(\overrightarrow {MD}  = \overrightarrow {MG}  + \overrightarrow {GD}  =  - \frac{1}{3}\overrightarrow {AM}  + \frac{2}{3}\overrightarrow {BN}  =  - \frac{1}{3} \cdot \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} ) + \frac{2}{3}(\overrightarrow {BA}  + \overrightarrow {AN} )\)

\( =  - \frac{1}{6}\overrightarrow {AB}  - \frac{1}{6}\overrightarrow {AC}  - \frac{2}{3}\overrightarrow {AB}  + \frac{2}{3} \cdot \frac{1}{2}\overrightarrow {AC}  =  - \frac{5}{6}\overrightarrow {AB}  + \frac{1}{6}\overrightarrow {AC} {\rm{. }}\)

Lời giải

a) Đ, b) S, c) S, d) S

a) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình.

b) \(\left( { - 1;2} \right)\) không là nghiệm của hệ bất phương trình.

c) Miền nghiệm của hệ là miền tứ giác ABCD (tô mầu vàng) như hình.

Cho hệ bất phương trình 2x + 5y >= - 4; x + 3y <= 9; 3x - 2y >=  - 6; x <= 3 . (ảnh 1)

d) Ta có \(A\left( { - 2;0} \right),B\left( {0;3} \right),C\left( {3;2} \right),D\left( {3; - 2} \right)\).

Ta có \(F\left( { - 2;0} \right) =  - 6;F\left( {0;3} \right) =  - 3;F\left( {3;2} \right) = 7;F\left( {3; - 2} \right) = 11\).

Vậy \(F = 3x - y\) đạt giá trị lớn nhất là \(11\) khi \(x = 3;y =  - 2\).

Câu 3

A. \(A \cap B = \left( {2;3} \right)\). 

B. \(A \cup B = \left[ { - 1;5} \right]\).
C. \(B\backslash A = \left( {3;5} \right]\).  
D. \(A\backslash B = \left[ { - 1;2} \right]\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[a\frac{{\sqrt {21} }}{6}\].  

B. \[a\frac{{\sqrt {21} }}{3}\].  
C. \[a\frac{{\sqrt 3 }}{6}\].   
D. \[a\frac{{\sqrt 3 }}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(b \approx 3257,63\).  

B. \(b \approx 3257,62\).   
C. \(b \approx 3257,6\).
D. \(b \approx 3257,7\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(15\).

B. \(4\)và \(6\).  
C. \(4\).                         
D. \(6\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP