Câu hỏi:

07/11/2025 29 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ \(A\) thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ \(B\) thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20 . Gọi \(x,y\) theo thứ tự là số lần người chơi chọn được chữ \(A\) và chữ \(B\). Khi đó:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đ, b) S, c) Đ, d) Đ

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\quad (*)\).

c) Thay cặp số \((7;1)\) vào bất phương trình \((*):3.7 - 1 \ge 20\) (đúng), suy ra \((7;1)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Thay cặp số \((8;4)\) vào bất phương trình \((*):3.8 - 4 \ge 20\) (đúng), suy ra \((8;4)\) là một nghiệm của \((*)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1

Gọi \(x\) là số bàn tiệc thực tế trong đám cưới ( \(x\) nguyên dương và \(x \in [30;35]\) ) và \(y\) (triệu đồng) là số tiền mà người đó phải trả cho nhà hàng.

Nếu đăng ký tại nhà hàng thứ nhất, người đó sẽ trả tiền theo công thức: \(y = 2x + 20\).

Với \(x \in [30;35]\) thì \(y \in [80;90]\), tức là người đó phải trả khoản tiền khoảng 80 triệu đến 90 triệu cho nhà hàng thứ nhất.

Nếu đăng ký tại nhà hàng thứ hai, người đó sẽ trả tiền theo công thức: \(y = 2,5x + 10\).

Với \(x \in [30;35]\) thì \(y \in [85;97,5]\), tức là người đó phải trả khoản tiền khoảng 85 triệu đến 97,5 triệu cho nhà hàng thứ hai.

Vậy, nếu chất lượng phục vụ hai nhà hàng là tương đương, người đó nên chọn nhà hàng thứ nhất để tiết kiệm một khoản chi phí tiệc cưới.

Câu 2

A. \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AM} \). 

B. \(\overrightarrow {AG}  = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)

C. \(\overrightarrow {AG}  = \frac{3}{4}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\).
D. \(\overrightarrow {AG}  = \frac{1}{3}\overrightarrow {AM} \).

Lời giải

Đáp án đúng là: B

Ta có \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM}  = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\) \( = \frac{1}{3}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\).

Câu 3

A. \(2a\). 

B. \(\frac{{a\sqrt 2 }}{2}\).   
C. \(\frac{{a\sqrt 3 }}{2}\).  
D. \(a\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP