(1,0 điểm)
Một tàu đánh cá xuất phát từ cảng \(A\), đi theo hướng \(N60^\circ E\) với vận tốc \(60km/h\) (\(N60^\circ E\) là hướng tạo với hướng bắc một góc \(60^\circ \) và tạo với hướng đông một góc \(30^\circ \)). Đi được \(90\) phút thì động cơ bị hỏng nên tàu trôi tự do theo hướng bắc với vận tốc \(6\,\,km/h\). Sau \(3\) giờ kể từ khi động cơ bị hỏng, tàu neo đậu được vào một hòn đảo. Tính khoảng cách từ cảng \(A\) tới đảo nơi tàu neo đậu.
(1,0 điểm)
Một tàu đánh cá xuất phát từ cảng \(A\), đi theo hướng \(N60^\circ E\) với vận tốc \(60km/h\) (\(N60^\circ E\) là hướng tạo với hướng bắc một góc \(60^\circ \) và tạo với hướng đông một góc \(30^\circ \)). Đi được \(90\) phút thì động cơ bị hỏng nên tàu trôi tự do theo hướng bắc với vận tốc \(6\,\,km/h\). Sau \(3\) giờ kể từ khi động cơ bị hỏng, tàu neo đậu được vào một hòn đảo. Tính khoảng cách từ cảng \(A\) tới đảo nơi tàu neo đậu.
Quảng cáo
Trả lời:
a)
b) Ta có hình vẽ:

Quãng đường di chuyển của tàu từ \(A\) đến vị trí \(B\) (động cơ tàu bị hỏng) sau \(1,5\) giờ với vận tốc \(60km/h\) là: \(60\,.\,1,5\, = \,90\,\,\left( {km} \right)\).
Quãng đường di chuyển của tàu từ \(B\) đến vị trí \(C\) (nơi neo đậu) sau \(3\) giờ với vận tốc \(6\,\,km/h\) là: \(6\,.\,3\, = \,18\,\,\left( {km} \right)\).
Ta có: \(\widehat {ABC} = 180^\circ - 60^\circ = 120^\circ \).
Xét tam giác \(ABC\), có:
\(A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.{\rm{cos}}\widehat {ABC}\) (định lí cosin)
\( = {90^2} + {18^2} - 2.90.18.{\rm{cos120}}^\circ \)
\( = 10\,\,044\)
\( \Leftrightarrow AC = 18\sqrt {31} \approx 100\,\,\left( {km} \right)\).
Vậy khoảng cách từ cảng \(A\) tới đảo nơi tàu neo đậu là khoảng \(100\,\,km\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(x\) là số bàn và \(y\) là số ghế anh An đóng được trong một tuần \(\left( {x;y\,\, \ge 0} \right)\).
Số giờ đề đóng \(x\) chiếc bàn và \(y\) chiếc ghế là: \(6x + 3y\) (giờ).
Mỗi tuần anh làm việc không quá \(60\) giờ nên ta có bất phương trình: \(6x + 3y \le 60\) (1).
Vì số ghế nhiều hơn số bàn ít nhất \(2\) lần nên ta có: \(y \ge 2x\)(2)
Từ (1) và (2) ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\6x + 3y \le 60\\y \ge 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 20\\ - 2x + y \ge 0\end{array} \right.\)
Miền nghiệm của hệ bất phương trình là miền trong của tam giác \(OAB\) với \(O\left( {0;\,\,0} \right),\,A\left( {5;\,\,10} \right),\,\,B\left( {0;20} \right)\).

Số tiền lãi thu được: \(F\left( {x;\,\,y} \right) = 150x + 100y\) (nghìn đồng).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 150.0 + 100.0 = 0\);
Tại \(A\left( {5;\,\,10} \right)\) có \(F\left( {5;\,\,10} \right) = 150.5 + 100.10 = 1\,\,750\);
Tại \(B\left( {0;20} \right)\) có \(F\left( {0;\,\,20} \right) = 150.0 + 100.20 = 2\,\,000\).
Vậy một tuần anh An phải đóng được \(0\) chiếc bàn và \(20\)chiếc ghế để tiền lãi thu được là lớn nhất.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
+) Gọi đường thẳng \({d_1}\) có dạng \(y = ax + b\left( 1 \right)\)
Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( { - 2;\,\,0} \right)\)
Thay lần lượt tọa độ hai điểm này vào \(\left( 1 \right)\) ta được hệ phương trình:
\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.\left( { - 2} \right) + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\)
\( \Rightarrow {d_1}:y = x + 2\) hay \({d_1}:x - y = - 2\)
Lấy \(O\left( {0;\,\,0} \right)\) có \(0 - 0 = 0 > - 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm không kể đường thẳng \[{d_1}\] nên ta có bất phương trình \(x - y < - 2\).
+) Gọi đường thẳng \({d_2}\) có dạng \(y = a'x + b'\left( 2 \right)\)
Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( {10;\,\,0} \right)\)
Thay lần lượt tọa độ hai điểm này vào \(\left( 2 \right)\) ta được hệ phương trình:
\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.10 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{1}{5}\\b = 2\end{array} \right.\)
\( \Rightarrow {d_2}:y = - \frac{1}{5}x + 2\) hay \({d_2}:x + 5y = 10\)
Lấy \(O\left( {0;\,\,0} \right)\) có \(0 + 5.0 = 0 < 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm kể cả đường thẳng \[{d_2}\] nên ta có bất phương trình \(x + 5y \ge 10\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


