Câu hỏi:

11/11/2025 58 Lưu

Anh Trung có kế hoạch đầu tư \(400\) triệu đồng vào hai khoản \(X\)\(Y\). Để đạt được lợi nhuận thì số tiền đầu tư cho khoản \(X\) phải ít nhất là \(100\) triệu đồng và số tiền đầu tư cho khoản \(Y\) không nhỏ hơn số tiền đầu tư cho khoản \(X\). Viết hệ bất phương trình bậc nhất hai ẩn mô tả về hai khoản đầu tư đó.

A. \(\left\{ \begin{array}{l}x \ge 0\\x - y \le 10\\y \ge 0\end{array} \right.\);                                    
B. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 100\\y \ge 0\end{array} \right.\);                      
C. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 0\\y \ge 0\end{array} \right.\);            
D. \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 10\\y \ge 100\end{array} \right.\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Gọi số tiền anh Trung đầu tư cho khoản \(X\)là \(x\) (triệu đồng), số tiền đầu tư cho khoản  \(Y\) là \(y\) (triệu đồng) \(\left( {x,y \ge 0} \right)\).

Vì số tiền đầu tư cho khoản \(X\) phải ít nhất là \(100\) triệu đồng nên ta có bất phương trình: \(x \ge 100\).

Số tiền đầu tư cho khoản \(Y\) không nhỏ hơn số tiền đầu tư cho khoản \(X\) nên \(y \ge x\) hay \(x - y \le 0\).

Khi đó ta có hệ bất phương trình: \(\left\{ \begin{array}{l}x \ge 100\\x - y \le 0\\y \ge 0\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\left\{ \begin{array}{l}x - y < - 2\\x + 5y \ge 10\end{array} \right.\);                                  
B. \(\left\{ \begin{array}{l}x - y \ge 2\\x + 5y < 10\end{array} \right.\);                      
C. \(\left\{ \begin{array}{l}x + y \ge - 2\\x - 5y < 10\end{array} \right.\);               
D. \(\left\{ \begin{array}{l}x + y < - 2\\x + 5y \ge 10\end{array} \right.\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

+) Gọi đường thẳng \({d_1}\) có dạng \(y = ax + b\left( 1 \right)\)

Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( { - 2;\,\,0} \right)\)

Thay lần lượt tọa độ hai điểm này vào \(\left( 1 \right)\) ta được hệ phương trình:

\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.\left( { - 2} \right) + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\)

\( \Rightarrow {d_1}:y = x + 2\) hay \({d_1}:x - y =  - 2\)

Lấy \(O\left( {0;\,\,0} \right)\) có \(0 - 0 = 0 >  - 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm không kể đường thẳng \[{d_1}\] nên ta có bất phương trình \(x - y <  - 2\).

+) Gọi đường thẳng \({d_2}\) có dạng \(y = a'x + b'\left( 2 \right)\)

Đường thẳng này đi qua hai điểm \(\left( {0;\,\,2} \right)\) và \(\left( {10;\,\,0} \right)\)

Thay lần lượt tọa độ hai điểm này vào \(\left( 2 \right)\) ta được hệ phương trình:

\(\left\{ \begin{array}{l}2 = a.0 + b\\0 = a.10 + b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - \frac{1}{5}\\b = 2\end{array} \right.\)

\( \Rightarrow {d_2}:y =  - \frac{1}{5}x + 2\) hay \({d_2}:x + 5y = 10\)

Lấy \(O\left( {0;\,\,0} \right)\) có \(0 + 5.0 = 0 < 2\) là điểm không thuộc miền nghiệm của hệ đã cho và miền nghiệm kể cả đường thẳng \[{d_2}\] nên ta có bất phương trình \(x + 5y \ge 10\).

Lời giải

Hướng dẫn giải

Gọi \(x\) là số bàn và \(y\) là số ghế anh An đóng được trong một tuần \(\left( {x;y\,\, \ge 0} \right)\).

Số giờ đề đóng \(x\) chiếc bàn và \(y\) chiếc ghế là: \(6x + 3y\) (giờ).

Mỗi tuần anh làm việc không quá \(60\) giờ nên ta có bất phương trình: \(6x + 3y \le 60\) (1).

Vì số ghế nhiều hơn số bàn ít nhất \(2\) lần nên ta có: \(y \ge 2x\)(2)

Từ (1) và (2) ta có hệ bất phương trình:

\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\6x + 3y \le 60\\y \ge 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 20\\ - 2x + y \ge 0\end{array} \right.\)

Miền nghiệm của hệ bất phương trình là miền trong của tam giác \(OAB\) với \(O\left( {0;\,\,0} \right),\,A\left( {5;\,\,10} \right),\,\,B\left( {0;20} \right)\).

Anh An làm nghề thợ mộc chuy (ảnh 1)

Số tiền lãi thu được: \(F\left( {x;\,\,y} \right) = 150x + 100y\) (nghìn đồng).

Ta có:

Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 150.0 + 100.0 = 0\);

Tại \(A\left( {5;\,\,10} \right)\) có \(F\left( {5;\,\,10} \right) = 150.5 + 100.10 = 1\,\,750\);

Tại \(B\left( {0;20} \right)\) có \(F\left( {0;\,\,20} \right) = 150.0 + 100.20 = 2\,\,000\).

Vậy một tuần anh An phải đóng được \(0\) chiếc bàn và \(20\)chiếc ghế để tiền lãi thu được là lớn nhất.

Câu 4

A. \(\left( {A \cup B} \right)\backslash C\); 
B. \(\left( {A \cap B} \right)\backslash C\);                                
C. \(\left( {A \cap B} \right) \cap C\);     
D. \(\left( {A \cap B} \right) \cup C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\(\left( {3;\,\,0} \right)\);                             
B. \(\left( {0;\,\, - 2} \right)\);                 
C. \((0;\,\,0)\);              
D. \(\left( {5;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Nếu \(\alpha > \beta \) thì \(\tan \alpha > \tan \beta \);                                                                     
B. Nếu \(\alpha = - \beta \) thì \[{\rm{cos}}\alpha = {\rm{cos}}\beta \];                                 
C. Nếu \(\alpha > \beta \) thì \(\sin \alpha = - \sin \beta \);                                                                     
D. Nếu \(\alpha = - \beta \) thì \(\cot \alpha = \cot \beta \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP