Câu hỏi:

15/11/2025 8 Lưu

(1,0 điểm)

a) Kí hiệu \(H\) là tập hợp học sinh lớp 10A1, \(T\) là tập hợp các học sinh nam và \(G\) là tập hợp các học sinh nữ của lớp 10A1. Hãy các định các tập hợp \(T \cup G,\,\,T \cap G\) và \(H\backslash T\).

b) Cho các tập hợp

\(A = \left\{ {x \in \mathbb{Z}|\left( {x + 2} \right)\left( {5{x^2} - 6x + 1} \right) = 0} \right\}\) và \(B = \left\{ {x \in \mathbb{R}|{x^2} - \left( {2m + 1} \right)x + 2m = 0} \right\}\).

Tìm điều kiện của tham số m để \(A \cup B\) có đúng 3 phần tử và tổng bình phương của chúng bằng 9.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

a) Ta có:

\(T \cup G\) là tập hợp số học sinh của lớp 10A1 hay \(T \cup G = H\).

\(T \cap G = \emptyset \).

\(H\backslash T\) là tập hợp học sinh của lớp 10A1 không chứa học sinh nam nên \(H\backslash T = G\).

b) Xét phương trình: \(\left( {x + 2} \right)\left( {5{x^2} - 6x + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\5{x^2} - 6x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 1\\x = \frac{1}{5}\end{array} \right.\).

Vì \(x \in \mathbb{Z}\) mà \(\frac{1}{5} \notin \mathbb{Z}\) nên \(A = \left\{ { - 2;\,\,1} \right\}\).

Khi đó tập hợp \(A\) có \(2\) phần tử vậy để \(A \cup B\) có đúng 3 phần tử thì một phần tử nữa phải lấy từ tập hợp \(B\) và giả sử đó là phần tử \(b\left( {b \ne  - 2;b \ne 1} \right)\).

Theo đầu bài ta có: \({\left[ {b + \left( { - 2} \right) + 1} \right]^2} = 9\)

\( \Leftrightarrow {\left( {b - 1} \right)^2} = 9\)

\( \Leftrightarrow \left[ \begin{array}{l}b - 1 = 3\\b - 1 =  - 3\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}b = 4\\b =  - 2\end{array} \right.\)

Do đó chỉ có \(b = 4\) là thỏa mãn yêu cầu.

Vì \(b = 4 \in B\) nên ta có \({4^2} - \left( {2m + 1} \right)4 + 2m = 0\)

\( \Leftrightarrow 16 - 8m - 4 + 2m = 0\)

\( \Leftrightarrow 12 - 6m = 0\)

\( \Leftrightarrow m = 2\).

Vậy với \(m = 2\) thì\(A \cup B\) có đúng 3 phần tử và tổng bình phương của chúng bằng 9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {AB} \)\(\overrightarrow {BI} \) cùng hướng;                                                         
B. \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng;
C. \(\overrightarrow {AI} \)\(\overrightarrow {IB} \) ngược hướng;                                                       
D. \(\overrightarrow {AI} \)\(\overrightarrow {BI} \) không cùng phương.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hướng dẫn giải  Đáp án đúng là: A (ảnh 1)

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng phương.

Và chúng cùng hướng từ trái sang phải.

Do đó, \(\overrightarrow {AB} \)\(\overrightarrow {AI} \) cùng hướng.

Câu 2

A. \(\sin x + {\rm{cos}}x = 1\);                               
B. \(1 + {\sin ^2}x = \frac{1}{{{{\cot }^2}x}}\);         
C. \({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\);                                                         
D. \[\tan x = \frac{{{\rm{cos}}\,x}}{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

\({\sin ^2}x + {\rm{co}}{{\rm{s}}^2}x = 1\). Do đó A sai.

\(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\). Do đó B sai.

\({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\). Do đó C đúng.

\[\tan x = \frac{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}{{{\rm{cos}}\,x}}\]. Do đó D sai.

Câu 4

A. Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau;
B. Hai tam giác bằng nhau là điều kiện đủ để diện tích của chúng bằng nhau;
C. Hai tam giác có diện tích bằng nhau là điều kiện đủ để chúng bằng nhau;
D. Hai tam giác có diện tích bằng nhau là điều kiện cần và đủ để chúng bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(45^\circ \);           
B. \(62^\circ \);               
C. \(63^\circ \);                                 
D. \(48^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tồn tại một số nguyên \(x\) để \(x\) chia hết cho 5;
B. Mọi số nguyên \(x\) chia hết cho 5;
C. Tồn tại một số nguyên \(x\) để \(x\) không chia hết cho 5;
D. Mọi số nguyên \(x\) không chia hết cho 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(4\);                        
B. \(15\);                      
C. \(16\);                          
D. \(14\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP