II. TỰ LUẬN (3 ĐIỂM)
(1 điểm) Trong một cuộc thi làm bánh, mỗi đội chơi được sử dụng tối đa 20 kg bột mì, 2 kg bột nở, 5 kg kem béo. Để làm một cái bánh cỡ bé cần 0,4 kg bột mì, 0,05 kg bột nở và 0,1 kg kem béo; để làm một cái bánh cỡ trung bình 0,6 kg bột mì, 0,075 kg bột nở và 0,15 kg kem béo. Mỗi cái bánh cỡ bé được 5 điểm thưởng, mỗi cái bánh cỡ lớn được 7 điểm thưởng. Hỏi cần phải làm mấy cái bánh mỗi loại để được nhiều điểm thưởng nhất?
II. TỰ LUẬN (3 ĐIỂM)
(1 điểm) Trong một cuộc thi làm bánh, mỗi đội chơi được sử dụng tối đa 20 kg bột mì, 2 kg bột nở, 5 kg kem béo. Để làm một cái bánh cỡ bé cần 0,4 kg bột mì, 0,05 kg bột nở và 0,1 kg kem béo; để làm một cái bánh cỡ trung bình 0,6 kg bột mì, 0,075 kg bột nở và 0,15 kg kem béo. Mỗi cái bánh cỡ bé được 5 điểm thưởng, mỗi cái bánh cỡ lớn được 7 điểm thưởng. Hỏi cần phải làm mấy cái bánh mỗi loại để được nhiều điểm thưởng nhất?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Gọi số bánh cỡ bé làm được là \(x\) (cái), số bánh cỡ lớn làm được là \(y\) (cái) (\(x,y \in {\mathbb{N}^*}\))
Khi đó, số điểm thưởng là: \(F\left( {x;y} \right) = 5x + 7y\).
Số kg bột mì cần dùng là: \(0,4x + 0,6y\) (kg).
Số kg bột nở cần dùng là: \(0,05x + 0,075y\) (kg).
Số kg kem béo cần dùng là: \(0,1x + 0,15y\) (kg).
Vì trong cuộc thi này chỉ được sử dụng tối đa 20 kg bột mì, 2 kg bột nở và 5 kg kem béo nên ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}0,4x + 0,6y \le 20\\0,05x + 0,075y \le 2\\0,1x + 0,15y \le 5\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 3y \le 100\\2x + 3y \le 80\\2x + 3y \le 100\\x \ge 0\\y \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 3y \le 80\\x \ge 0\\y \ge 0\end{array} \right.\) (*)
Bài toán trở thành tìm giá trị lớn nhất của hàm số \(F\left( {x;y} \right)\) trên miền nghiệm của hệ bất phương trình (*).

Miền nghiệm của hệ bất phương trình (*) là tam giác \(OAB\) (kể cả biên).
Hàm số \(F\left( {x;y} \right) = 5x + 7y\) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (*) khi \(\left( {x;y} \right)\) là tọa độ một trong các đỉnh \(O\left( {0;0} \right)\), \(A\left( {40;0} \right)\), \(B\left( {0;\frac{{80}}{3}} \right)\).
Mà \(F\left( {0;0} \right) = 0\), \(F\left( {40;0} \right) = 200\), \(F\left( {0;\frac{{80}}{3}} \right) = \frac{{560}}{3}\).
Suy ra \(F\left( {x;y} \right)\) lớn nhất khi \(\left( {x;y} \right) = \left( {40;0} \right)\).
Do đó, cần phải làm 40 cái bánh cỡ bé để nhận được số điểm thưởng là lớn nhất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Ta có: \(A\), \(I\), \(B\) cùng thuộc đường thẳng \(AB\) nên \(\overrightarrow {AB} \) và \(\overrightarrow {AI} \) cùng phương.
Và chúng cùng hướng từ trái sang phải.
Do đó, \(\overrightarrow {AB} \) và \(\overrightarrow {AI} \) cùng hướng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
\({\sin ^2}x + {\rm{co}}{{\rm{s}}^2}x = 1\). Do đó A sai.
\(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\). Do đó B sai.
\({\tan ^2}x + 1 = \frac{1}{{{{\cos }^2}x}}\). Do đó C đúng.
\[\tan x = \frac{{{\mathop{\rm s}\nolimits} {\rm{in}}\,x}}{{{\rm{cos}}\,x}}\]. Do đó D sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.