Câu hỏi:

16/11/2025 14 Lưu

Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - y < 1\\x + 2y \ge 0\end{array} \right.\) có miền nghiệm được biểu diễn như hình vẽ:

Hướng dẫn giải  Đáp án đúng là: C (ảnh 1)

Câu nào mô tả đúng nhất miền nghiệm của hệ bất phương trình trên?

A. Miền nghiệm của hệ bất phương trình là miền bị gạch chéo trong hình vẽ kể cả hai đường thẳng \({d_1}\)\({d_2}\);                     
B. Miền nghiệm của hệ bất phương trình là miền bị gạch chéo trong hình vẽ không kể cả hai đường thẳng \({d_1}\)\({d_2}\);                     
C. Miền nghiệm của hệ bất phương trình là miền không bị gạch chéo trong hình vẽ kể đường thẳng \({d_1}\) và không kể đường thẳng \({d_2}\);           
D. Miền nghiệm của hệ bất phương trình là miền không bị gạch chéo trong hình vẽ không kể đường thẳng \({d_1}\) và kể cả đường thẳng \({d_2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Miền nghiệm của hệ bất phương trình là miền không bị gạch chéo trong hình vẽ không kể đường thẳng \({d_1}\) và kể cả đường thẳng \({d_2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(a > 0,\,\,b < 0,\,\,c > 0\);                                                                           
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\);                                                                           
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Vì Parabol có bề lõm quay lên trên nên \(a > 0\).

Suy ra đáp án C, D sai.

Xét đáp án A: Ta gọi I là đỉnh của Parabol vậy

 \({x_I} = - \frac{b}{{2a}} = - \frac{{\left( { - 4} \right)}}{{2.1}} = 2;\,{y_I} = {2^2} - 4.2 - 1 = - 5\) Vậy đỉnh \(I(2; - 5)\)

Suy ra đáp án A sai.

Xét đáp án B: Ta gọi I là đỉnh của Parabol vậy

xI=b2a=42.1=2;yI=224.21=5 Vậy đỉnh \(I(2; - 1)\)

Trục đối xứng \(x = 2\).

Giao điểm của đồ thị với trục \(Oy\)\(A\left( {0;3} \right)\).

Parabol cắt trục hoành tại hai điểm có hoành độ là ngiệm của phương trình \({x^2} - 4x + 3 = 0\) tức là \(x = 1\)\(x = 3\).

Suy ra đáp án B đúng.

Câu 2

A. \(\left( {A \cup B} \right)\backslash C\); 
B. \(\left( {A \cap B} \right)\backslash C\);                                
C. \(\left( {A \cap B} \right) \cap C\);    
D. \(\left( {A \cap B} \right) \cup C\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Phần gạch chéo trong hình tương ứng với tập \(\left( {A \cap B} \right)\backslash C\).

Câu 3

A. \(56\);                      
B. \(71\);                      
C. \(41\);                          
D. \(45\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(P\) sai và \(Q\) đúng;                                       
B. \(P\) sai và \(Q\) sai;
C. \(P\) đúng và \(Q\) sai;                                        
D. \(P\) đúng và \(Q\) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(2\);                        
B. \(3\);                        
C. \(0\);                            
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\forall a,b \in \mathbb{R},a < b,\exists r \in \mathbb{Q}:a < r < b\);                                         
B. \(\forall a,b \in \mathbb{R},\forall r \in \mathbb{Q}:a < r < b\);
C. \(\forall a,b \in \mathbb{R},a < b,\forall r \in \mathbb{Q}:a < r < b\)                                          
D. \(\exists a,b \in \mathbb{R},\exists r \in \mathbb{Q}:a < r < b\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP