Câu hỏi:

17/11/2025 7 Lưu

Cho tam giác \(ABC\), điểm \(I\) nằm trong tam giác, các tia \(AI,BI,CI\) cắt các cạnh \(BC,AC,AB\) theo thứ tự ở \(D,E,F\). Qua \(A\) kẻ đường thẳng song song với \(BC\) cắt tia \(CI\) tại \(H\) và cắt tia \(BI\) tại \(K\).

Media VietJack

Khi đó:

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(AK\parallel BD\) nên áp dụng định lí Thalès, ta có: \(\frac{{AI}}{{ID}} = \frac{{AK}}{{BD}}.\) (1)

\(AH\parallel DC\) nên suy ra \(\frac{{AI}}{{ID}} = \frac{{AH}}{{DC}}\) (2)

Từ (1) và (2) suy ra \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).

b) Đúng.

Ta có \(\frac{{AF}}{{BF}} = \frac{{AH}}{{BC}}{\rm{ }}\left( {AH\parallel BC} \right)\)\(\frac{{AE}}{{CE}} = \frac{{AK}}{{BC}}{\rm{ }}\left( {AK\parallel BC} \right)\).

Do đó, \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{AH}}{{BC}} + \frac{{AK}}{{BC}} = \frac{{HK}}{{BC}}.\)

c) Đúng.

Lại có \(\frac{{HK}}{{BC}} = \frac{{HI}}{{IC}}{\rm{ }}\left( {HK\parallel BC} \right)\)\(\frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}{\rm{ }}\left( {AH\parallel BC} \right)\).

Từ đây suy ra \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}} = \frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}\).

Suy ra \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).

d) Sai.

Từ phần a), ta có: \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\) suy ra \(\frac{{BD}}{{DC}} = \frac{{AK}}{{AH}}\).

Lại có \(AK\parallel BC\) suy ra \(\frac{{EC}}{{EA}} = \frac{{BC}}{{AK}}\).

Mặt khác \(AH\parallel BC\) nên \(\frac{{FA}}{{FB}} = \frac{{HA}}{{BC}}\).

Từ đây suy ra \(\frac{{BD}}{{DC}} \cdot \frac{{EC}}{{EA}} \cdot \frac{{FA}}{{FB}} = \frac{{AK}}{{AH}} \cdot & \frac{{BC}}{{AK}} \cdot \frac{{HA}}{{BC}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

\(BC \bot AB',\,B'C' \bot AB'\) nên \(BC\parallel B'C'\).

Do đó, \(\frac{{AB}}{{AB'}} = \frac{{BC}}{{B'C'}}\) (Hệ quả của định lí Thalès)

Suy ra \(\frac{{AB}}{{AB + BB'}} = \frac{{BC}}{{B'C'}}\) hay \(\frac{x}{{x + 20}} = \frac{{30}}{{40}}\)

Suy ra \(40x = 30\left( {x + 20} \right)\) nên \(x = 60\,\,\left( {\rm{m}} \right)\).

Lời giải

a) Đúng.

\(CB \bot AF,\,\,ED \bot AF,\,\,GF \bot \,AF\) nên \(CB\parallel ED\parallel GF\).

b) Đúng.

Xét \(\Delta AFG\)\(ED\parallel GF\) nên \(\frac{{AD}}{{AF}} = \frac{{ED}}{{GF}}\) (hệ quả của định lí Thales)

Suy ra \(\frac{{AD}}{{12}} = \frac{8}{6}\) suy ra \(AD = \frac{{12 \cdot 8}}{6} = 16\,\,\left( {\rm{m}} \right)\,\).

c) Sai.

Xét \(\Delta ADE\)\(CB\parallel ED\) nên: \(\frac{{AB}}{{AD}} = \frac{{CB}}{{ED}}\) (hệ quả của định lí Thalès)

d) Đúng.

\(\frac{{AB}}{{AD}} = \frac{{CB}}{{ED}}\) nên \(\frac{{AB}}{{16}} = \frac{{1,8}}{8}\) suy ra \(AB = 3,6\,\,\left( {\rm{m}} \right)\).

Do đó, \(BD = AD - AB = 16 - 3,6 = 12,4\,\,\left( {\rm{m}} \right)\).

Vậy người quan sát có chiều cao \(1,8\,\,{\rm{m}}\) phải đứng cách bức tường \(12,4\,\,{\rm{m}}\) để có thể nhìn thấy ngọn.

Câu 4

A. \(\frac{{AB}}{{CD}} = \frac{1}{4}.\) 
B. \(\frac{{AB}}{{CD}} = \frac{1}{5}.\)   
C. \(\frac{{AB}}{{CD}} = \frac{1}{6}.\)   
D. \(\frac{{AB}}{{CD}} = 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP