Câu hỏi:

17/11/2025 87 Lưu

Cho tam giác \(ABC\), điểm \(I\) nằm trong tam giác, các tia \(AI,BI,CI\) cắt các cạnh \(BC,AC,AB\) theo thứ tự ở \(D,E,F\). Qua \(A\) kẻ đường thẳng song song với \(BC\) cắt tia \(CI\) tại \(H\) và cắt tia \(BI\) tại \(K\).

Media VietJack

Khi đó:

a) \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).
Đúng
Sai
b) \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).
Đúng
Sai
d) \(\frac{{BD}}{{DC}} \cdot \frac{{EC}}{{EA}} \cdot \frac{{FA}}{{FB}} = 3.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(AK\parallel BD\) nên áp dụng định lí Thalès, ta có: \(\frac{{AI}}{{ID}} = \frac{{AK}}{{BD}}.\) (1)

\(AH\parallel DC\) nên suy ra \(\frac{{AI}}{{ID}} = \frac{{AH}}{{DC}}\) (2)

Từ (1) và (2) suy ra \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\).

b) Đúng.

Ta có \(\frac{{AF}}{{BF}} = \frac{{AH}}{{BC}}{\rm{ }}\left( {AH\parallel BC} \right)\)\(\frac{{AE}}{{CE}} = \frac{{AK}}{{BC}}{\rm{ }}\left( {AK\parallel BC} \right)\).

Do đó, \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{AH}}{{BC}} + \frac{{AK}}{{BC}} = \frac{{HK}}{{BC}}.\)

c) Đúng.

Lại có \(\frac{{HK}}{{BC}} = \frac{{HI}}{{IC}}{\rm{ }}\left( {HK\parallel BC} \right)\)\(\frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}{\rm{ }}\left( {AH\parallel BC} \right)\).

Từ đây suy ra \(\frac{{AF}}{{BF}} + \frac{{AE}}{{CE}} = \frac{{HK}}{{BC}} = \frac{{HI}}{{IC}} = \frac{{AI}}{{ID}}\).

Suy ra \(\frac{{AE}}{{CE}} + \frac{{AF}}{{BF}} = \frac{{AI}}{{ID}}\).

d) Sai.

Từ phần a), ta có: \(\frac{{AK}}{{BD}} = \frac{{AH}}{{DC}}\) suy ra \(\frac{{BD}}{{DC}} = \frac{{AK}}{{AH}}\).

Lại có \(AK\parallel BC\) suy ra \(\frac{{EC}}{{EA}} = \frac{{BC}}{{AK}}\).

Mặt khác \(AH\parallel BC\) nên \(\frac{{FA}}{{FB}} = \frac{{HA}}{{BC}}\).

Từ đây suy ra \(\frac{{BD}}{{DC}} \cdot \frac{{EC}}{{EA}} \cdot \frac{{FA}}{{FB}} = \frac{{AK}}{{AH}} \cdot & \frac{{BC}}{{AK}} \cdot \frac{{HA}}{{BC}} = 1.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

\(BC \bot AB',\,B'C' \bot AB'\) nên \(BC\parallel B'C'\).

Do đó, \(\frac{{AB}}{{AB'}} = \frac{{BC}}{{B'C'}}\) (Hệ quả của định lí Thalès)

Suy ra \(\frac{{AB}}{{AB + BB'}} = \frac{{BC}}{{B'C'}}\) hay \(\frac{x}{{x + 20}} = \frac{{30}}{{40}}\)

Suy ra \(40x = 30\left( {x + 20} \right)\) nên \(x = 60\,\,\left( {\rm{m}} \right)\).

Lời giải

Đáp án đúng là: C

Ta có: \(AB \bot AC,\,ME \bot AC\) nên \(ME\parallel AB\).

Do đó, \[\frac{{ME}}{{AB}} = \frac{{MC}}{{AC}}\] hay \(\frac{{1,2}}{{AB}} = \frac{{1,5}}{5}\) suy ra \(AB = \frac{{1,2 \cdot 5}}{{1,5}} = 4\,\,\left( {\rm{m}} \right)\).

Câu 3

a) \(CB\parallel ED\parallel GF\).
Đúng
Sai
b) \(AD = 16\,\,\left( {\rm{m}} \right)\).
Đúng
Sai

c) \(\frac{{AB}}{{AD}} = \frac{{ED}}{{CB}}\).

Đúng
Sai
d) Người quan sát phải đứng cách tường \(12,4\,\,{\rm{m}}\) để có thể nhìn thấy ngọn.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 2\,\,{\rm{m}}{\rm{.}}\)     
B. \(x = 3,3\,\,{\rm{m}}{\rm{.}}\)      
C. \(x = 0,7\,\,{\rm{m}}{\rm{.}}\)  
D. \(x = 1,2\,\,{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP