Tam giác \(ABC\) vuông cân tại \(A\) nội tiếp trong đường tròn tâm \(O\) bán kính \(R\) và có bán kính đường tròn nội tiếp tam giác là \(r\). Khi đó tỉ số \(\frac{R}{r}\) là
Quảng cáo
Trả lời:
Đáp án đúng là: A
Giả sử ta có \(AB = AC = a\), do tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \) và bán kính đường tròn ngoại tiếp tam giác là \(R = \frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\).
Nửa chu vi tam giác \(ABC\) là \(p = \frac{{AB + AC + BC}}{2} = \frac{{a + a + a\sqrt 2 }}{2} = \frac{{\left( {2 + \sqrt 2 } \right)a}}{2}\).
Diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot a \cdot a = \frac{{{a^2}}}{2}\).
Lại có \(S = pr\) với \(r\) là bán kính đường tròn nội tiếp tam giác \(ABC\).
Suy ra \(r = \frac{S}{p} = \frac{{\frac{{{a^2}}}{2}}}{{\frac{{\left( {2 + \sqrt 2 } \right)a}}{2}}} = \frac{a}{{2 + \sqrt 2 }}\). Vậy \(\frac{R}{r} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{a}{{2 + \sqrt 2 }}}} = 1 + \sqrt 2 \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Ta có: \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}} = \frac{{10}}{{18}} = \frac{5}{9} \Leftrightarrow \left| {\overrightarrow a } \right| = \frac{5}{9}\left| {\overrightarrow b } \right|\), mà hai vectơ \(\overrightarrow a ,\,\overrightarrow b \) ngược hướng nên \[\overrightarrow a = - \frac{5}{9}\overrightarrow b \].
Vậy \(m = - \frac{5}{9}\).
Lời giải
a) Ta có: \[B{C^2} = {\left| {\overrightarrow {BC} } \right|^2} = {\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2} = A{C^2} + A{B^2} - 2\overrightarrow {AC} \cdot \overrightarrow {AB} \].
Suy ra: \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \frac{{A{C^2} + A{B^2} - B{C^2}}}{2} = \frac{{{b^2} + {c^2} - {a^2}}}{2}\].
Tương tự ta có: \[\overrightarrow {BC} \cdot \overrightarrow {BA} = \frac{{{a^2} + {c^2} - {b^2}}}{2};\;\;\;\overrightarrow {CA} \cdot \overrightarrow {CB} = \frac{{{a^2} + {b^2} - {c^2}}}{2}\].
Suy ra: \[\;\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {BC} \cdot \overrightarrow {CA} + \overrightarrow {CA} \cdot \overrightarrow {AB} \]\[ = - \overrightarrow {BA} \cdot \overrightarrow {BC} - \overrightarrow {CB} \cdot \overrightarrow {CA} - \overrightarrow {AC} \cdot \overrightarrow {AB} \]
\[ = - \left( {\frac{{{c^2} + {a^2} - {b^2}}}{2} + \frac{{{a^2} + {b^2} - {c^2}}}{2} + \frac{{{b^2} + {c^2} - {a^2}}}{2}} \right) = - \frac{{{a^2} + {b^2} + {c^2}}}{2}\].b) Ta có: \[\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \] với \[M\] là trung điểm của \[BC\].
Vì \[G\] là trọng tâm tam giác \[ABC\] nên \[\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \]. Vậy \[\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].
Suy ra: \[A{G^2} = {\overrightarrow {AG} ^2} = \frac{1}{9}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{9}\left( {A{B^2} + A{C^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} } \right)\]
\[ = \frac{1}{9}\left( {{c^2} + {b^2} + 2 \cdot \frac{{{b^2} + {c^2} - {a^2}}}{2}} \right) = \frac{1}{9}\left( {2{b^2} + 2{c^2} - {a^2}} \right)\].
\[ \Rightarrow AG = \frac{1}{3}\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} \].
Ta có: \[\overrightarrow {AG} \cdot \overrightarrow {BC} = \left| {\overrightarrow {AG} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {AG} ,\,\,\overrightarrow {BC} } \right)\]\( \Rightarrow \cos \left( {\overrightarrow {AG} ,\,\,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {AG} \cdot \overrightarrow {BC} }}{{\left| {\overrightarrow {AG} } \right| \cdot \left| {\overrightarrow {BC} } \right|}}\).
Lại có: \[\overrightarrow {AG} \cdot \overrightarrow {BC} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{1}{3}\left( {A{C^2} - A{B^2}} \right) = \frac{1}{3}\left( {{b^2} - {c^2}} \right)\].
Do đó, \[\cos \left( {\overrightarrow {AG} ,\,\overrightarrow {BC} } \right) = \frac{{\frac{1}{3}\left( {{b^2} - {c^2}} \right)}}{{\frac{1}{3}\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} \cdot a}} = \frac{{{b^2} - {c^2}}}{{a\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} }}\].
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
