Câu hỏi:

18/11/2025 66 Lưu

Trong các dãy số \[\left( {{u_n}} \right)\] cho bởi số hạng tổng quát \({u_n}\) sau, dãy số nào là dãy số tăng?

\[{u_n} = \frac{1}{{{2^n}}}.\]

\[{u_n} = \frac{1}{n}.\]

\[{u_n} = \frac{{n + 5}}{{3n + 1}}.\]

\[{u_n} = \frac{{2n - 1}}{{n + 1}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Vì \({2^n};\,\,n\) là các dãy dương và tăng nên \(\frac{1}{{{2^n}}};\,\,\frac{1}{n}\) là các dãy giảm, do đó loại phương án A và B.

Xét phương án C: loại C.

Xét phương án D: \({u_n} = \frac{{2n - 1}}{{n + 1}} = 2 - \frac{3}{{n + 1}} \Rightarrow {u_{n + 1}} - {u_n} = 3\left( {\frac{1}{{n + 1}} - \frac{1}{{n + 2}}} \right) > 0,\,\,\forall n \in {\mathbb{N}^*}.\)

Do đó, \({u_{n + 1}} > {u_n}\) nên đây là dãy số tăng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′  có  A C  cắt  B D  tại  O  và  A ′ C ′  cắt  B ′ D ′  tại  O ′ .  Khi đó  ( A B ′ D ′ )  song song với mặt phẳng nào dưới đây? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)

\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)

Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)

\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)

Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)

Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)

\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)

Lời giải

Đáp án đúng là: C

Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)

Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)

Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:

\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SAB} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP