Câu hỏi:

17/11/2025 27 Lưu

Trong các dãy số sau, dãy số nào là một cấp số cộng?

A.

\(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19.\)

B.

\(1;\,\,4;\,\,6;\,\,7;\,\,10.\)

C.

\(1;\,\,0;\,\,0;\,\,0;\,\,0.\)

D.

\(3;\,\,9;\,\,27;\,\,81;\,\,243.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét dãy số \(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19\) ta có:

\({u_2} - {u_1} = - 4 - 1 = - 5;\) \({u_3} - {u_2} = - 9 - \left( { - 4} \right) = - 5;\)

\({u_4} - {u_3} = - 14 - \left( { - 9} \right) = - 5;\) \({u_5} - {u_4} = - 19 - \left( { - 14} \right) = - 5.\)

\( \Rightarrow {u_{n + 1}} - {u_n} = - 5,\,\,\forall n \in \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}.\)

Vậy dãy số \(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19\) là cấp số cộng với công sai \(d = - 5.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình hộp  A B C D . A ′ B ′ C ′ D ′  có  A C  cắt  B D  tại  O  và  A ′ C ′  cắt  B ′ D ′  tại  O ′ .  Khi đó  ( A B ′ D ′ )  song song với mặt phẳng nào dưới đây? (ảnh 1)

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)

\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)

Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)

\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)

Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)

Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)

\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)

Lời giải

Đáp án đúng là: C

Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)

Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)

Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:

\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)

\(\left( {MNP} \right){\rm{//}}\left( {SAB} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)

Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP