Cho hình chóp \(S.ABCD,\) gọi \(O\) là giao điểm của hai đường chéo \(BD\) và \(AC.\) Phát biểu nào dưới đây đúng?
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B

Ta có: \(AC \cap BD = O \Rightarrow \left\{ \begin{array}{l}O \in AC\\O \in BD\end{array} \right.\)
Mà \(AC \subset \left( {SAC} \right)\) và \(BD \subset \left( {SBD} \right).\)
Suy ra \(O \in \left( {SAC} \right) \cap \left( {SBD} \right).\)
Mặt khác \[S \in \left( {SAC} \right) \cap \left( {SBD} \right).\]
Do đó \(SO = \left( {SAC} \right) \cap \left( {SBD} \right).\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\left( {A'OC'} \right).\)
\(\left( {BDA'} \right).\)
\(\left( {BDC'} \right).\)
\(\left( {BCD} \right).\)
Lời giải
Đáp án đúng là: C

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)
\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)
Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)
\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)
Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)
Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)
\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)
Câu 2
\({u_n} = {3^{n - 1}}.\)
\({u_n} = {3^{n + 1}}.\)
\({u_n} = {3^n}.\)
\({u_n} = {n^{n - 1}}.\)
Lời giải
Đáp án đúng là: C
Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)
Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)
Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:
\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\frac{1}{{{{\sin }^2}x}}.\)
\(\frac{1}{{{{\cos }^2}x}}.\)
\(\frac{2}{{{{\sin }^2}x}}.\)
\(\frac{2}{{{{\cos }^2}x}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.