Trong các mệnh đề sau, mệnh đề nào đúng?
Trong không gian, qua một điểm và một đường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho.
Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy.
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo tính chất hai đường thẳng song song ta có: Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau.
Xét phương án A sai: Nếu điểm nằm trên đường thẳng thì không tồn tại đường thẳng qua điểm đó và song song với đường thẳng đã cho.
Xét phương án C và D sai: Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\left( {A'OC'} \right).\)
\(\left( {BDA'} \right).\)
\(\left( {BDC'} \right).\)
\(\left( {BCD} \right).\)
Lời giải
Đáp án đúng là: C

Vì \(ABCD.A'B'C'D'\) là hình hộp nên \(BB'{\rm{//}}DD'\) và \(BB' = DD'.\)
\( \Rightarrow BB'D'D\) là hình bình hành nên \(B'D'{\rm{//}}BD.\)
Mà \(BD \subset \left( {BDC'} \right)\) và \(B'D' \not\subset \left( {BDC'} \right).\)
\( \Rightarrow B'D'{\rm{//}}\left( {BDC'} \right).\)
Tương tự ta cũng có \(AD'{\rm{//}}\left( {BDC'} \right).\)
Ta có: \(B'D'{\rm{//}}\left( {BDC'} \right);\,\,AD'{\rm{//}}\left( {BDC'} \right)\) và \(B'D' \cap AD' = D'\) trong \(\left( {AB'D'} \right).\)
\( \Rightarrow \left( {AB'D'} \right){\rm{//}}\left( {BDC'} \right).\)
Lời giải
a) \(\mathop {\lim }\limits_{n \to + \infty } \frac{{3n - 1}}{{2n + 3}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n\left( {3 - \frac{1}{n}} \right)}}{{n\left( {2 + \frac{3}{n}} \right)}}\) \( = \mathop {\lim }\limits_{n \to + \infty } \frac{{3 - \frac{1}{n}}}{{2 + \frac{3}{n}}} = \frac{3}{2}\).
b) \[\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {{x^2} + 4} - 2}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {{x^2} + 4} - 2} \right).\left( {\sqrt {{x^2} + 4} + 2} \right)}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} + 4 - 4}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}}\]
\( = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{x\left( {\sqrt {{x^2} + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{x}{{\sqrt {{x^2} + 4} + 2}} = \frac{0}{{\sqrt {0 + 4} + 2}} = 0.\)
Câu 3
\({u_n} = {3^{n - 1}}.\)
\({u_n} = {3^{n + 1}}.\)
\({u_n} = {3^n}.\)
\({u_n} = {n^{n - 1}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\frac{1}{{{{\sin }^2}x}}.\)
\(\frac{1}{{{{\cos }^2}x}}.\)
\(\frac{2}{{{{\sin }^2}x}}.\)
\(\frac{2}{{{{\cos }^2}x}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.