Cho mặt phẳng \(\left( R \right)\) cắt hai mặt phẳng song song \(\left( P \right)\) và \[\left( Q \right)\] theo hai giao tuyến \(a\) và \(b.\) Mệnh đề nào sau đây đúng?
\(a\) và \(b\) có một điểm chung duy nhất.
\(a\) và \(b\) song song.
\(a\) và \(b\) trùng nhau.
\(a\) và \(b\) song song hoặc trùng nhau.
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 1 Toán 11 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Theo tính chất của hai mặt phẳng song song: “Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau”. Từ đó ta có \(a\) và \(b\) song song.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \({u_n}\) là quãng đường đi lên của người đó sau \(n\) lần kéo lên \(\left( {n \in {\mathbb{N}^*}} \right).\)
Sau lần kéo lên đầu tiên quãng đường đi lên của người đó là:
\({u_1} = 100.80\% = 100.0,8 = 80\) (m).
Sau lần kéo lên thứ hai quãng đường đi lên của người đó là:
\({u_2} = 80.80\% = 80.0,8\) (m).
Sau lần kéo lên thứ ba quãng đường đi lên của người đó là:
\({u_3} = 80.0,8.80\% = 80.0,8.0,8 = 80.0,{8^2}\) (m).
Khi đó, dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = 80\) và công bội \(q = 0,8.\)
Ta có công thức tổng quát \({u_n} = 80.{\left( {0,8} \right)^{n - 1}}\) (m).
Tổng quãng đường người đó đi được sau 10 lần kéo lên là:
\({S_{10}} = \frac{{80\left( {1 - 0,{8^{10}}} \right)}}{{1 - 0,8}} \approx 357,05\,\,\left( {\rm{m}} \right).\)
Câu 2
\({u_n} = {3^{n - 1}}.\)
\({u_n} = {3^{n + 1}}.\)
\({u_n} = {3^n}.\)
\({u_n} = {n^{n - 1}}.\)
Lời giải
Đáp án đúng là: C
Ta có: \(\left\{ \begin{array}{l}{u_1} = 3\\{u_{n + 1}} = 3{u_n}\end{array} \right.,\forall n \in {\mathbb{N}^*} \Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = 3,\forall n \in {\mathbb{N}^*}.\)
Suy ra dãy số \(\left( {{u_n}} \right)\) đã cho là cấp số nhân với công sai \(q = 3\) và số hạng đầu \({u_1} = 3.\)
Khi đó, số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là:
\({u_n} = {3.3^{n - 1}} = {3.3^n}{.3^{ - 1}} = {3^n}.\)
Câu 3
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {ABCD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBD} \right).\)
Đường thẳng \(SO\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left( {MNP} \right){\rm{//}}\left( {ABCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SCD} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SBC} \right).\)
\(\left( {MNP} \right){\rm{//}}\left( {SAB} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(\left( {AMN} \right).\)
\(\left( {ABC} \right).\)
\(\left( {ABD} \right).\)
\(\left( {CMN} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.