Câu hỏi:

18/11/2025 73 Lưu

Cho mặt phẳng \(\left( P \right)\) cắt hai mặt phẳng song song \(\left( Q \right)\) và \[\left( R \right)\] theo hai giao tuyến \(a\) và \(b.\) Mệnh đề nào sau đây đúng?

\(a\) và \(b\) có một điểm chung duy nhất.

\(a\) và \(b\) không có điểm chung.

\(a\) và \(b\) có vô số điểm chung.

\(a\) và \(b\) có hai điểm chung.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Theo tính chất của hai mặt phẳng song song: “Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau”. Từ đó ta có \(a\) và \(b\) song song vậy nên hai đường thẳng \(a\) và \(b\) không có điểm chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành tâm  O .  Gọi  M , N  lần lượt là trung điểm của  S A , C D .  (a) Chứng minh  ( O M N ) / / ( S B C ) . (ảnh 1)

a) • Xét \(\Delta SAC\) có: \(M,\,\,O\) lần lượt là trung điểm của \(SA,\,AC\) nên \(MO\) là đường trung bình của \(\Delta SAC\), suy ra\[MO{\rm{//}}SC.\]

Mà \(SC \subset \left( {SBC} \right) \Rightarrow MO{\rm{//}}\left( {SBC} \right).\)

• Xét \[\Delta DCB\] có: \(N,\,\,O\)lần lượt là trung điểm của \[CD,\,\,BD\] nên \(NO\) là đường trung bình của \[\Delta CBD\], suy ra \(NO{\rm{//}}BC.\)

Mà \(BC \subset \left( {SBC} \right) \Rightarrow NO{\rm{//}}\left( {SBC} \right).\)

Ta có: \(MO{\rm{//}}\left( {SBC} \right);\,\,NO{\rm{//}}\left( {SBC} \right)\) và \(MO \cap NO = O\) trong \(\left( {OMN} \right).\)

\( \Rightarrow \left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)

Vậy \(\left( {OMN} \right){\rm{//}}\left( {SBC} \right).\)

b) Ta có: \(\Delta SAD\) và \(\Delta SAB\) là hai tam giác cân tại \(A.\)

\( \Rightarrow AE,\,\,AF\) vừa là phân giác vừa là đường trung tuyến lần lượt của \(\Delta SAD\) và \(\Delta SAB.\)

\( \Rightarrow E,\,\,F\) lần lượt là trung điểm của \(SD\) và \(SB.\)

Suy ra \(EF\) là đường trung bình của \(\Delta SBD\) nên \(EF{\rm{//}}BD.\)

Mà \(EF \subset \left( {AEF} \right) \Rightarrow BD{\rm{//}}\left( {AEF} \right).\)

Câu 2

0.

2.

1.

\( + \infty .\)

Lời giải

Đáp án đúng là: A

Ta có: \(\lim \frac{2}{{{n^2} + 1}} = \lim \frac{{\frac{2}{{{n^2}}}}}{{1 + \frac{1}{{{n^2}}}}} = \frac{{\lim \frac{2}{{{n^2}}}}}{{\lim \left( {1 + \frac{1}{{{n^2}}}} \right)}} = \frac{0}{1} = 0.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

\( + \infty .\)

2.

\[ - \infty .\]

\( - 2.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Dãy số bị chặn.

Dãy số bị chặn trên.

Dãy số bị chặn dưới.

Không bị chặn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trung điểm của \(BD.\)

Trung điểm của \(BC.\)

Trọng tâm của \(\Delta BCD.\)

Điểm \(B.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(SK\) (\(K\) là trung điểm của \(AB\)).

\(SO\) (\(O\) là tâm của hình bình hành \(ABCD\)).

\(d\) (\(d\) đi qua \(S\) và song song với \(AB\)).

\(d\) (\(d\) đi qua \(S\) và song song với \(BC\)).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP