Câu hỏi:

18/11/2025 27 Lưu

Một cột đèn cao \(3,5\;{\rm{m}}\) có bóng trên mặt đất dài \(2\;{\rm{m}}{\rm{.}}\) Gần đó có một tòa nhà cao tầng có bóng trên mặt đất là \(40\;\,{\rm{m}}\) và mỗi tầng của tòa nhà cao \(3,5\;\,{\rm{m}}{\rm{.}}\) (như hình vẽ)

Media VietJack

a) \(\Delta ABC \sim \Delta DEF.\)
Đúng
Sai
b) \(\frac{{AB}}{{AC}} = \frac{{DF}}{{DE}}.\)
Đúng
Sai
c) Tòa nhà cao hơn \(80\;\,{\rm{m}}{\rm{.}}\)
Đúng
Sai
d) Tòa nhà có nhiều hơn 20 tầng
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(\Delta ABC\) và \(\Delta DEF\) có: \(\widehat {BAC} = \widehat {EDF} = 90^\circ ;\;\,\widehat C = \widehat {EFD}\) nên \(\Delta ABC \sim \Delta DEF\) (g.g).

b) Sai.

\(\Delta ABC \sim \Delta DEF\) (cmt) nên \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}.\) Do đó, \(\frac{{AB}}{{AC}} = \frac{{DE}}{{DF}}.\)

c) Sai.

Vì cột đèn cao \(3,5\;{\rm{m}}\) có bóng trên mặt đất dài \(2\;{\rm{m}}\) nên \(DE = 3,5\;{\rm{m}};\;\,DF = 2\;{\rm{m}}{\rm{.}}\)

Vì bóng tòa nhà trên mặt đất là \(40\;\,{\rm{m}}\) nên \(AC = 40\;\,{\rm{m}}.\)

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}}\) nên \(AB = \frac{{AC \cdot DE}}{{DF}} = \frac{{40 \cdot 3,5}}{2} = 70\;\,\left( {\rm{m}} \right).\)

Vậy tòa nhà thấp hơn \(80\;\,{\rm{m}}{\rm{.}}\)

d) Sai.

Số tầng của tòa nhà là: \(70:3,5 = 20\) (tầng). Vậy tòa nhà có 20 tầng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(\Delta AHM \sim \Delta ABH.\)
Đúng
Sai

b) \(A{H^2} = AN \cdot AC.\)

Đúng
Sai

b) \(A{H^2} = AN \cdot AC.\)

Đúng
Sai
d) \(\Delta ANM \sim \Delta ABC.\)
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

\(M,\;\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\;\,AC\) nên \(HM \bot AB;\;\,HN \bot AC.\)

Do đó, \(\widehat {AMH} = \widehat {HMB} = \widehat {ANH} = \widehat {HNC} = 90^\circ .\)

\(AH\) là đường cao của tam giác \(ABC\) nên \(AH \bot BC.\) Suy ra \(\widehat {AHB} = \widehat {AHC} = 90^\circ .\)

\(\Delta AHM\)\(\Delta ABH\) có: \(\widehat {AMH} = \widehat {AHB} = 90^\circ ;\;\,\widehat {HAM}\) chung nên \(\Delta AHM \sim \Delta ABH\) (g.g).

b) Đúng.

\(\Delta AHN\)\(\Delta ACH\) có: \(\widehat {ANH} = \widehat {AHC} = 90^\circ ;\;\,\widehat {HAN}\) chung nên \(\Delta AHN \sim \Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AN}}{{AH}}.\) Suy ra \(A{H^2} = AN \cdot AC.\)

c) Sai.

Theo a) ta có: \(\Delta AHM \sim \Delta ABH\)  (g.g) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}.\) Suy ra \(AM \cdot AB = A{H^2}.\)

\(A{H^2} = AN \cdot AC\) nên \(AM \cdot AB = AN \cdot AC.\)

d) Đúng.

\(AM \cdot AB = AN \cdot AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}.\)

\(\Delta ANM\) và \(\Delta ABC\) có: \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}};\;\,\widehat {NAM} = \widehat {BAC} = 90^\circ \) chung nên \(\Delta ANM \sim \Delta ABC\)(c.g.c).

Lời giải

Đáp án: 5

Media VietJack

\(\Delta MNC\) và \(\Delta ABC\) có: \(\widehat {NMC} = \widehat {BAC} = 90^\circ ,\;\,\widehat C\) chung nên  (g.g).\(\Delta MNC \sim \Delta ABC\)

Suy ra: \(\frac{{MN}}{{AB}} = \frac{{MC}}{{AC}}\;\,\left( 1 \right).\)

Vì \(AM\) là đường phân giác trong \(\Delta ABC\) nên \(\frac{{MB}}{{MC}} = \frac{{AB}}{{AC}}\) suy ra \(\frac{{MB}}{{AB}} = \frac{{MC}}{{AC}}\;\,\left( 2 \right).\)

Từ \(\left( 1 \right),\;\,\left( 2 \right)\) ta có: \(\frac{{MN}}{{AB}} = \frac{{MB}}{{AB}}.\) Vậy \(MB = MN = 5\;\,{\rm{m}}{\rm{.}}\)

Câu 3

A. \(20\;{\rm{m}}{\rm{.}}\)     
B. \(25\;{\rm{m}}{\rm{.}}\)
C. \(30\;\,{\rm{m}}{\rm{.}}\)  
D. \(16\;{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(BD = 1,5OA.\)  
B. \(BD = 3OA.\)       
C. \(BD = 2,5OA.\)   
D. \(BD = 2OA.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP