Cho hình vẽ bên:

Hỏi diện tích \(\Delta ACD\) gấp bao nhiêu lần diện tích tích \(\Delta OCE?\)
Cho hình vẽ bên:

Hỏi diện tích \(\Delta ACD\) gấp bao nhiêu lần diện tích tích \(\Delta OCE?\)
Quảng cáo
Trả lời:
Đáp án: 4
\(\Delta OCE\) và \(\Delta DCA\) có: \(\widehat E = \widehat A,\;\,\widehat {ECO} = \widehat {DCA}\) (hai góc đối đỉnh).
Do đó, \(\Delta OCE \sim \Delta DCA\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
Suy ra: \(\widehat D = \widehat O = 90^\circ \) và \(\frac{{OE}}{{DA}} = \frac{{OC}}{{CD}} = \frac{{EC}}{{CA}} = \frac{4}{8} = \frac{1}{2}.\)Diện tích \(\Delta OCE\) vuông tại \(O\) là: \({S_{OCE}} = \frac{1}{2}OE \cdot OC.\)
Diện tích \(\Delta DCA\) vuông tại \(D\) là: \({S_{DCA}} = \frac{1}{2}DA \cdot CD.\)
Ta có: \(\frac{{{S_{DCA}}}}{{{S_{OCE}}}} = \frac{{\frac{1}{2}DA \cdot CD}}{{\frac{1}{2}OE \cdot OC}} = \frac{{DA}}{{OE}} \cdot \frac{{CD}}{{OC}} = 2 \cdot 2 = 4.\)
Suy ra, diện tích \(\Delta ACD\) gấp 4 lần diện tích tích \(\Delta OCE.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: D
Vì \(\Delta ABC\) vuông tại \(A\) nên \(\widehat A = 90^\circ .\) Vì \(\Delta MNP\) vuông tại \(P\) nên \(\widehat P = 90^\circ .\)
Vì \(\widehat A = \widehat P = 90^\circ \) nên để \(\Delta ABC \sim \Delta PMN\) thì cần thêm điều kiện: \(\widehat B = \widehat M\) hoặc \(\widehat C = \widehat N.\)
Do đó, chọn đáp án D.
Lời giải

a) Đúng.
Vì \(M,\;\,N\) lần lượt là hình chiếu của \(H\) trên \(AB,\;\,AC\) nên \(HM \bot AB;\;\,HN \bot AC.\)
Do đó, \(\widehat {AMH} = \widehat {HMB} = \widehat {ANH} = \widehat {HNC} = 90^\circ .\)
Vì \(AH\) là đường cao của tam giác \(ABC\) nên \(AH \bot BC.\) Suy ra \(\widehat {AHB} = \widehat {AHC} = 90^\circ .\)
\(\Delta AHM\) và \(\Delta ABH\) có: \(\widehat {AMH} = \widehat {AHB} = 90^\circ ;\;\,\widehat {HAM}\) chung nên \(\Delta AHM \sim \Delta ABH\) (g.g).
b) Đúng.
\(\Delta AHN\) và \(\Delta ACH\) có: \(\widehat {ANH} = \widehat {AHC} = 90^\circ ;\;\,\widehat {HAN}\) chung nên \(\Delta AHN \sim \Delta ACH\) (g.g).
Do đó, \(\frac{{AH}}{{AC}} = \frac{{AN}}{{AH}}.\) Suy ra \(A{H^2} = AN \cdot AC.\)
c) Sai.
Theo a) ta có: \(\Delta AHM \sim \Delta ABH\) (g.g) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}.\) Suy ra \(AM \cdot AB = A{H^2}.\)
Mà \(A{H^2} = AN \cdot AC\) nên \(AM \cdot AB = AN \cdot AC.\)
d) Đúng.
Vì \(AM \cdot AB = AN \cdot AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}.\)
\(\Delta ANM\) và \(\Delta ABC\) có: \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}};\;\,\widehat {NAM} = \widehat {BAC} = 90^\circ \) chung nên \(\Delta ANM \sim \Delta ABC\)(c.g.c).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

