Câu hỏi:

19/11/2025 47 Lưu

A. Trắc nghiệm

Dạng 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Chọn khẳng định đúng.

A. \(\sin \left( {\pi  - \alpha } \right) =  - \sin \alpha \).  

B. \(\cot \left( {\pi  - \alpha } \right) = \cot \alpha \).

C. \(\tan \left( {\pi  - \alpha } \right) = \tan \alpha \).  
D. \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha \). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\sin \left( {x + \frac{\pi }{4}} \right) = 0\)\( \Leftrightarrow x + \frac{\pi }{4} = k\pi \)\( \Leftrightarrow x =  - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

Vì \(x \in \left[ {0;2025\pi } \right]\) nên \(0 \le  - \frac{\pi }{4} + k\pi  \le 2025\pi \)\( \Leftrightarrow \frac{1}{4} \le k \le \frac{{8101}}{4}\) mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;..;2025} \right\}\).

Khi đó \(S = \frac{{3\pi }}{4} + \frac{{7\pi }}{4} + \frac{{11\pi }}{4} + ... + \frac{{8099\pi }}{4}\)\( = \frac{\pi }{4}\left( {3 + 7 + 11 + ... + 8099} \right)\)\( = \frac{\pi }{4}.\frac{{\left( {3 + 8099} \right).2025}}{2} = \frac{{4051.2025\pi }}{4}\).

Khi đó \(\frac{{4S}}{{2025\pi }} = \frac{4}{{2025\pi }}.\frac{{4051.2025\pi }}{4} = 4051\).

Trả lời: 4051.

Lời giải

Ta có \(0 \le \left| {3\cos \frac{{\left( {2t - 1} \right)\pi }}{3}} \right| \le 3\) hay \(0 \le h \le 3\).

Đẳng thức \(h = 3\) xảy ra khi và chỉ khi \(\left| {\cos \frac{{\left( {2t - 1} \right)\pi }}{3}} \right| = 1\) \( \Leftrightarrow \sin \frac{{\left( {2t - 1} \right)\pi }}{3} = 0\)\( \Leftrightarrow \frac{{\left( {2t - 1} \right)\pi }}{3} = k\pi \)\( \Leftrightarrow 2t - 1 = 3k\)\( \Leftrightarrow t = \frac{{3k + 1}}{2}\left( {k \in \mathbb{Z},3k + 1 \ge 0} \right)\).

Ta thấy \(0 \le \frac{{3k + 1}}{2} \le 10\)\( \Leftrightarrow 0 \le 3k + 1 \le 20\)\( \Leftrightarrow  - 1 \le 3k \le 19\)\( \Leftrightarrow  - \frac{1}{3} \le k \le \frac{{19}}{3}\).

Mà k Î ℤ nên \(k \in \left\{ {0;1;2;3;4;5;6} \right\}\).

Các giá trị tương ứng của t là \(t \in \left\{ {\frac{1}{2};2;\frac{7}{2};5;\frac{{13}}{2};8;\frac{{19}}{2}} \right\}\).

Vậy trong khoảng thời gian 10 giây đầu tiên, có 7 lần người chơi đu ở xa vị trí cân bằng nhất.

Trả lời: 7.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(\sin x =  - \frac{{\sqrt {10} }}{{10}}\).

Đúng
Sai

b) \(\cos x = \frac{{\sqrt 3 }}{{10}}\).

Đúng
Sai

c) \(\sin \left( {\frac{{4\pi }}{3} - x} \right) =  - \frac{{\sqrt {10} }}{5}\).

Đúng
Sai
d) \(\tan \left( {x + \frac{\pi }{3}} \right) = \frac{{\sqrt 3 }}{3}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) < 0\). 

B. \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) > 0\).   
C. \(\tan \left( {\frac{{3\pi }}{2} + \alpha } \right) > 0\). 
D. \(\tan \left( {\pi  - \alpha } \right) \ge 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Số lượng bướm ban đầu là 5 nghìn con.

Đúng
Sai

b) Số lượng bướm nhỏ nhất là 3 nghìn con.

Đúng
Sai

c) Số lượng bướm luôn dao động từ 1 nghìn con đến 5 nghìn con.

Đúng
Sai
d) Số lượng bướm lần đầu tiên chạm mức 4 nghìn con khi t = 5 tuần.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP