Câu hỏi:

19/11/2025 9 Lưu

Cho biết \(\tan x = 5\). Tính giá trị biểu thức \(Q = \frac{{3\sin x - 4\cos x}}{{\cos x + 2\sin x}}\).

A. \(Q = 1\).  

B. \(Q = \frac{{19}}{{11}}\).
C. \(Q =  - 1\).   
D. \(Q = \frac{{11}}{9}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(Q = \frac{{3\sin x - 4\cos x}}{{\cos x + 2\sin x}}\)\( = \frac{{3\frac{{\sin x}}{{\cos x}} - 4}}{{1 + 2\frac{{\sin x}}{{\cos x}}}}\)\( = \frac{{3\tan x - 4}}{{1 + 2\tan x}}\)\( = \frac{{3.5 - 4}}{{1 + 2.5}} = 1\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \sin \left( {\pi  + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi  - x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right)\)\( =  - \sin x + \sin x - \cot x + \cot x = 0\). Chọn C.

Câu 2

Lời giải

a) Chu kì tuần hoàn của hàm số là \(T = 2\pi \).

b) Tập xác định của hàm số là \(D = \mathbb{R}\).

c) Tập giá trị của hàm\(\sin x = \frac{1}{2}\) số là \(T = \left[ { - 1;1} \right]\).

d) \(\sin x = \frac{1}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).

Tập nghiệm của phương trình  là \(S = \left\{ {\frac{\pi }{6} + k2\pi ;\frac{{5\pi }}{6} + k2\pi ,k \in \mathbb{Z}} \right\}\).

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP