Cho hàm số \(f\left( x \right) = \tan \left( { - x} \right)\) xác định trên tập D.
a) Tập xác định của hàm số là D = ℝ.
b) \(y = \tan x,\forall x \in \mathbb{R}\).
c) \(f\left( x \right) = 1 \Leftrightarrow x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).
Câu hỏi trong đề: Bài tập ôn tập Toán 11 Kết nối tri thức Chương 1 có đáp án !!
Quảng cáo
Trả lời:
a) \(f\left( x \right) = \tan \left( { - x} \right) = - \tan x\).
Điều kiện \(\cos x \ne 0 \Leftrightarrow x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\).
Tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
b) \(f\left( x \right) = \tan \left( { - x} \right) = - \tan x\).
c) \(f\left( x \right) = 1 \Leftrightarrow - \tan x = 1\)\( \Leftrightarrow \tan x = - 1\)\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).
d) Vì \(x \in \left[ { - \pi ;2\pi } \right]\) nên \( - \pi \le - \frac{\pi }{4} + k\pi \le 2\pi \)\( \Leftrightarrow - \frac{3}{4} \le k \le \frac{9}{4}\) mà k Î ℤ nên k = 0; k = 1; k = 2.
Khi đó phương trình có các nghiệm là \(x = - \frac{\pi }{4};x = \frac{{3\pi }}{4};x = \frac{{7\pi }}{4}\).
Suy ra tổng các nghiệm của phương trình là \( - \frac{\pi }{4} + \frac{{3\pi }}{4} + \frac{{7\pi }}{4} = \frac{{9\pi }}{4}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\sin \left( {x + \frac{\pi }{4}} \right) = 0\)\( \Leftrightarrow x + \frac{\pi }{4} = k\pi \)\( \Leftrightarrow x = - \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).
Vì \(x \in \left[ {0;2025\pi } \right]\) nên \(0 \le - \frac{\pi }{4} + k\pi \le 2025\pi \)\( \Leftrightarrow \frac{1}{4} \le k \le \frac{{8101}}{4}\) mà \(k \in \mathbb{Z}\) nên \(k \in \left\{ {1;2;..;2025} \right\}\).
Khi đó \(S = \frac{{3\pi }}{4} + \frac{{7\pi }}{4} + \frac{{11\pi }}{4} + ... + \frac{{8099\pi }}{4}\)\( = \frac{\pi }{4}\left( {3 + 7 + 11 + ... + 8099} \right)\)\( = \frac{\pi }{4}.\frac{{\left( {3 + 8099} \right).2025}}{2} = \frac{{4051.2025\pi }}{4}\).
Khi đó \(\frac{{4S}}{{2025\pi }} = \frac{4}{{2025\pi }}.\frac{{4051.2025\pi }}{4} = 4051\).
Trả lời: 4051.
Lời giải
Ta có \(0 \le \left| {3\cos \frac{{\left( {2t - 1} \right)\pi }}{3}} \right| \le 3\) hay \(0 \le h \le 3\).
Đẳng thức \(h = 3\) xảy ra khi và chỉ khi \(\left| {\cos \frac{{\left( {2t - 1} \right)\pi }}{3}} \right| = 1\) \( \Leftrightarrow \sin \frac{{\left( {2t - 1} \right)\pi }}{3} = 0\)\( \Leftrightarrow \frac{{\left( {2t - 1} \right)\pi }}{3} = k\pi \)\( \Leftrightarrow 2t - 1 = 3k\)\( \Leftrightarrow t = \frac{{3k + 1}}{2}\left( {k \in \mathbb{Z},3k + 1 \ge 0} \right)\).
Ta thấy \(0 \le \frac{{3k + 1}}{2} \le 10\)\( \Leftrightarrow 0 \le 3k + 1 \le 20\)\( \Leftrightarrow - 1 \le 3k \le 19\)\( \Leftrightarrow - \frac{1}{3} \le k \le \frac{{19}}{3}\).
Mà k Î ℤ nên \(k \in \left\{ {0;1;2;3;4;5;6} \right\}\).
Các giá trị tương ứng của t là \(t \in \left\{ {\frac{1}{2};2;\frac{7}{2};5;\frac{{13}}{2};8;\frac{{19}}{2}} \right\}\).
Vậy trong khoảng thời gian 10 giây đầu tiên, có 7 lần người chơi đu ở xa vị trí cân bằng nhất.
Trả lời: 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(\sin x = - \frac{{\sqrt {10} }}{{10}}\).
b) \(\cos x = \frac{{\sqrt 3 }}{{10}}\).
c) \(\sin \left( {\frac{{4\pi }}{3} - x} \right) = - \frac{{\sqrt {10} }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\tan \left( {\frac{{3\pi }}{2} - \alpha } \right) < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(P = 2\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Số lượng bướm ban đầu là 5 nghìn con.
b) Số lượng bướm nhỏ nhất là 3 nghìn con.
c) Số lượng bướm luôn dao động từ 1 nghìn con đến 5 nghìn con.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
