Quảng cáo
Trả lời:
a) \(f\left( x \right) = \frac{1}{2}\)\( \Leftrightarrow \cos x = \frac{1}{2}\)\( \Leftrightarrow x = \pm \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).
Vậy tập nghiệm của phương trình là \(\left\{ {\frac{\pi }{3} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\).
b) Vì \(x \in \left[ { - \frac{\pi }{2};\frac{{5\pi }}{2}} \right]\) nên \(\left[ \begin{array}{l} - \frac{\pi }{2} \le \frac{\pi }{3} + k2\pi \le \frac{{5\pi }}{2}\\ - \frac{\pi }{2} \le - \frac{\pi }{3} + k2\pi \le \frac{{5\pi }}{2}\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - \frac{5}{{12}} \le k \le \frac{{13}}{{12}}\\ - \frac{1}{{12}} \le k \le \frac{{17}}{{12}}\end{array} \right.\).
Mà \(k \in \mathbb{Z}\) nên \(\left[ \begin{array}{l}k = 0;k = 1\\k = 0;k = 1\end{array} \right.\) \( \Rightarrow \left[ \begin{array}{l}x = \frac{\pi }{3};x = \frac{{7\pi }}{3}\\x = - \frac{\pi }{3};x = \frac{{5\pi }}{3}\end{array} \right.\).
Suy ra phương trình có 4 nghiệm trên đoạn \(\left[ { - \frac{\pi }{2};\frac{{5\pi }}{2}} \right]\).
c) Tổng các nghiệm của phương trình \(f\left( x \right) = \frac{1}{2}\)trên đoạn \(\left[ { - \frac{\pi }{2};\frac{{5\pi }}{2}} \right]\) là \(\frac{\pi }{3} + \frac{{7\pi }}{3} + \left( { - \frac{\pi }{3}} \right) + \frac{{5\pi }}{3} = 4\pi \).
d) \(f\left( x \right) = g\left( x \right)\)\( \Leftrightarrow \cos x = \sin 5x\)\( \Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} - 5x} \right)\)\( \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{2} - 5x = x + k2\pi \\\frac{\pi }{2} - 5x = - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + k\frac{\pi }{3}\\x = \frac{\pi }{8} + k\frac{\pi }{2}\end{array} \right.,k \in \mathbb{Z}\).
Suy ra tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{{12}} + k\frac{\pi }{3};\frac{\pi }{8} + k\frac{\pi }{2},k \in \mathbb{Z}} \right\}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(A = - 2\sin x\).
B. \(A = - 2\cot x\).
Lời giải
\(A = \sin \left( {\pi + x} \right) + \cos \left( {\frac{\pi }{2} - x} \right) + \cot \left( {2\pi - x} \right) + \tan \left( {\frac{{3\pi }}{2} - x} \right)\)\( = - \sin x + \sin x - \cot x + \cot x = 0\). Chọn C.
Lời giải
a) Chu kì tuần hoàn của hàm số là \(T = 2\pi \).
b) Tập xác định của hàm số là \(D = \mathbb{R}\).
c) Tập giá trị của hàm\(\sin x = \frac{1}{2}\) số là \(T = \left[ { - 1;1} \right]\).
d) \(\sin x = \frac{1}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.,k \in \mathbb{Z}\).
Tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ;\frac{{5\pi }}{6} + k2\pi ,k \in \mathbb{Z}} \right\}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{4}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.