Câu hỏi:

19/11/2025 8 Lưu

Cho \(\sin x = \frac{2}{3}\). Giá trị của biểu thức \(P = \sin 2x.\cos x\) bằng

 

A. \(\frac{{20}}{{27}}.\)
B. \(\frac{{\sqrt 5 }}{{27}}.\)        
C. \( - \frac{{\sqrt 5 }}{{27}}.\)          
D. \( - \frac{{20}}{{27}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \({\sin ^2}x + {\cos ^2}x = 1 \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {\frac{2}{3}} \right)^2} = \frac{5}{9}.\)

\[ \Rightarrow P = \sin 2x.\cos x = 2\sin x\cos x.\cos x = 2\sin x.{\cos ^2}x = 2.\frac{2}{3}.\frac{5}{9} = \frac{{20}}{{27}}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

A. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha + \frac{1}{2}.\)  
B. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha + \frac{{\sqrt 3 }}{2}\cos \alpha .\)
C. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha - \frac{{\sqrt 3 }}{2}\cos \alpha .\)           
D. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Đáp án đúng là: D

Ta có: \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP