Câu hỏi:

19/11/2025 9 Lưu

Trong các dãy số sau, dãy số nào là một cấp số cộng?

A. \(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19.\)                         
B. \(1;\,\,4;\,\,6;\,\,7;\,\,10.\)
C. \(1;\,\,0;\,\,0;\,\,0;\,\,0.\)           
D. \(3;\,\,9;\,\,27;\,\,81;\,\,243.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Xét dãy số \(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19\) ta có:

\({u_2} - {u_1} = - 4 - 1 = - 5;\) \({u_3} - {u_2} = - 9 - \left( { - 4} \right) = - 5;\)

\({u_4} - {u_3} = - 14 - \left( { - 9} \right) =  - 5;\) \({u_5} - {u_4} = - 19 - \left( { - 14} \right) = - 5.\)

\( \Rightarrow {u_{n + 1}} - {u_n} = - 5,\,\,\forall n \in \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}.\)

Vậy dãy số \(1;\,\, - 4;\,\, - 9;\,\, - 14;\,\, - 19\) là cấp số cộng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

\(AN \subset \left( {AMN} \right)\)\(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

\(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

\(MN \subset \left( {AMN} \right)\)\(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Câu 2

A. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha + \frac{1}{2}.\)  
B. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha + \frac{{\sqrt 3 }}{2}\cos \alpha .\)
C. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{1}{2}\sin \alpha - \frac{{\sqrt 3 }}{2}\cos \alpha .\)           
D. \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Đáp án đúng là: D

Ta có: \(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 3 }}{2}\sin \alpha + \frac{1}{2}\cos \alpha .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP